期刊文献+

基于环状矩形分块的纹理图像检索

Texture Image Retrieval Based on Ring-Like Rectangular Blocks
下载PDF
导出
摘要 提出一种环状矩形分块纹理检索算法。将图像分成环状矩形边缘区域、中心环状矩形区域和核心矩形区域。对最外层边缘区域不予处理,这可明显减少检索时间,且对检索效果影响很少。对每幅图像分别求出中心区域和核心区域基于灰度共生矩阵的能量、对比度和熵所构成的纹理特征向量,两幅图像中心区域纹理特征向量欧式距离和核心区域纹理特征向量的欧式距离之和决定这两幅图像相似性。而环状矩形具有圆形分块的旋转不变性但计算更简单。经实验验证。 A new method for texture image retrieval which is based on ring-like rectangular blocks is proposed. It divides into the image the ring-like rectangle fringing field, the central ring-like rectangle region and the core rectangle region. No treatment is for the outermost edge area, this can significantly reduce retrieval time and little influence on retrieval effect. The texture feature vector composed of GLCM-based energy, contrast and entropy is calculated for each image central area and core area. Sum of two region euclidean distance decides these two image similarity. Ring-like rectangular has rotation invariance, but calculations easier. Validated by experiments, for some categories it has better search results.
作者 高勇钢
出处 《计算机系统应用》 2011年第11期193-195,共3页 Computer Systems & Applications
关键词 图像检索 灰度共生矩阵 image retrieval gray level co-occurrence matrix entropy
  • 相关文献

参考文献5

  • 1Tamura H, Moil S, Yamawaki T, et al. Texture feature corresponding to visual perception. IEEE Trans. on System, Man and Cybernetics, 1978, SMC-8(6):460--473.
  • 2Kia OE, Doermann DS, Rosenfeld A, et al. Symbolic Compression and Processing of Document Images. Computer Vision and Image Understanding, 1998,70(3):335-34.
  • 3曾智勇,周利华,吴成柯.基于快速小波包直方图技术的图像检索算法[J].计算机科学,2006,33(10):213-215. 被引量:3
  • 4Haralick RM, Shanmugram K. Texture features for image classification. IEEE Trans. on System, Man and Cybernetics, 1973,3(6):610-621.
  • 5田小忱,杨东,杜春华.综合颜色和Contourlet直方图的图像检索方法[J].计算机工程,2010,36(1):224-226. 被引量:20

二级参考文献9

  • 1Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Trans. on Img. Processing, 2005, 14(12): 2091-2106.
  • 2Gouet V, Boujemaa N. Object-based Queries Using Color Points of Interest[C]//Proc. of IEEE Workshop on CBAIVL. Hawaii, USA: [s. n.], 2001.
  • 3Gouet V, Montesinos R Pele D. Stereo Matching of Color Images Using Differential lnvariants[C]//Proceedings of the IEEE International Conference on Image Processing. Chicago, USA: [s. n.], 1998.
  • 4Bovik A C,Clark M,Geisler W S.Multichannel texture analysis using localized spatial filters[J].IEEE Trans.PAMI,1990,12(1):55~73
  • 5Chang T,Kuo C C J.Texture analysis and classification with tree-structured wavelet transform[J].IEEE Trans.Image Processing,1993,2:429~441
  • 6Lain A,Fan J.Texture classification by wavelet packet signatures[J].IEEE Trans.PAMI,1993,15:1186~1191
  • 7Lee M C,Pun C M.Texture classification using domain wavelet packet energy feature[A].Image Analysis and Interpretation,2000,In:Proc.4th IEEE Southwest Symposium,Austin,Texas,USA,April,2000.301~304
  • 8Smith J R,Chang S F.Automated binary texture feature sets for image retrieval[A].In:Proc.ICASSP,Atlanta,May,1996,4:2239~2242
  • 9Mandal M K,Aboulnasr T.Fast wavelet histogram techniques for image indexing[J].Computer Vision and Image Understanding,1999,75(1-2):99~110

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部