期刊文献+

A modified version of free orbit-dimension of von Neumann algebras

A modified version of free orbit-dimension of von Neumann algebras
原文传递
导出
摘要 Based on the notion of free orbit-dimension of Hadwin-Shen (2007) we introduce a new invariant for finite von Neumann algebras with arbitrarily large generating sets and acting on Hilbert spaces of arbitrary dimension. We show that this invariant is independent of the generating set, and we extend results in Hadwin-Shen (2007) to this larger class of algebras. Based on the notion of free orbit-dimension of Hadwin-Shen (2007) we introduce a new invariant for finite von Neumann algebras with arbitrarily large generating sets and acting on Hilbert spaces of arbitrary dimension. We show that this invariant is independent of the generating set, and we extend results in Hadwin-Shen (2007) to this larger class of algebras.
出处 《Science China Mathematics》 SCIE 2011年第11期2329-2346,共18页 中国科学:数学(英文版)
关键词 von Neumann algebras free entropy dimension free orbit dimension 代数 轨道 Hilbert空间 免费 版本 修改 发电机组 不变量
  • 相关文献

参考文献18

  • 1MichalDOST/~L,DonHADWIN.An Alternative to Free Entropy for Free Group Factors[J].Acta Mathematica Sinica,English Series,2003,19(3):419-472. 被引量:1
  • 2L. Ge,J. Shen.On free entropy dimension of finite von Neumann algebras[J]. Geometric and Functional Analysis . 2002 (3)
  • 3Dan Voiculescu.The analogues of entropy and of fisher’s information measure in free probability theory III: The absence of cartan subalgebras[J]. Geometric and Functional Analysis . 1996 (1)
  • 4Dan Voiculescu.The analogues of entropy and of Fisher’s information measure in free probability theory, II[J]. Inventiones Mathematicae . 1994 (1)
  • 5Dan Voiculescu.Limit laws for Random matrices and free products[J]. Inventiones Mathematicae . 1991 (1)
  • 6Sorin Popa.On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors[J]. Inventiones Mathematicae . 1981 (2)
  • 7Hadwin D,Li W.A note on approximate liftings. Oper Matrices . 2009
  • 8Ge L.Applications of free entropy to finite von Neumann algebras II. Annals of Mathematics . 1998
  • 9Ge L.Prime factors. Proceedings of the National Academy of Sciences of the United States of America . 1996
  • 10Voiculescu D.Free entropy dimension 1 for some generators of property T factors of type II 1. Journal fur die Reine und Angewandte Mathematik . 1999

二级参考文献24

  • 1Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅰ.Comm. Math. Phys., 155(1), 71-92 (1993).
  • 2Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅱ.Invent. Math., 118(3), 411-440 (1994).
  • 3Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅲ,The absence of 5 subalgebras. Geom. Funct. Anal., 6(1), 172-199 (1996).
  • 4Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅳ, Maximum entropy and freeness. Free probability theory (Waterloo, ON, 1995), 293 302, Fields Inst.Commun., 12, Amer. Math. Soc., Providence, RI. (1997).
  • 5Voiculescu, D.: The analogues of entropy and of Fisher's information measure in free probability theory Ⅴ,Noncommutative Hilbert transforms. Invent. Math., 132(1), 189-227 (1998).
  • 6Voiculescu, D. V., Dykema, K. J., Nica, A.: Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. CRM Monograph Series, 1. American Mathematical Society, Providence, RI, (1992).
  • 7Ge, L.: Applications of free entropy to finite von Neumann algebras. Amer. J. Math., 119, 467-485 (1997).
  • 8Ge, L.: Prime factors. Proc. Nat. Acad. Sci. U.S.A., 93(23): 12762-12763 (1996).
  • 9Ge, L.: Applications of free entropy to finite von Neumann algebras II. Ann. of Math., 147(2), 143-157(1998).
  • 10Ge, L., Popa, S.: On some decomposition properties for factors of type II1. Duke Math. J., 94, 79-101(1998).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部