期刊文献+

Characterization of Lie multiplicative isomorphisms between nest algebras 被引量:2

Characterization of Lie multiplicative isomorphisms between nest algebras
原文传递
导出
摘要 Let N and M be nests on Banach spaces X and Y over the real or complex field F, respectively, with the property that if M ∈ M such that M_ =M, then M is complemented in Y. Let AlgN and AlgM be the associated nest algebras. Assume that Ф : AlgN → AlgM is a bijective map. It is proved that, if dim X = ∞ and if there is a nontrivial element in N which is complemented in X, then Ф is Lie multiplicative (i.e. Ф([A, B]) = [Ф(A), Ф(B)] for all A, B ∈ AlgN) if and only if Ф has the form Ф(A) = TAT^-1 + τ(A) for all A ∈ AlgAN or Ф(A) = -TA^*T^-1 + τ(A) for all A ∈ AlgN, where T is an invertible linear or conjugate linear operator and τ : AlgN →FI is a map with τ([A, B]) = 0 for all A, B ∈ AlgN. The Lie multiplicative maps are also characterized for the case dim X 〈 ∞. Let N and M be nests on Banach spaces X and Y over the real or complex field F,respectively,with the property that if M∈M such that M-=M,then M is complemented in Y.Let AlgN and AlgM be the associated nest algebras.Assume that Φ:AlgN→AlgM is a bijective map.It is proved that,if dim X=∞ and if there is a nontrivial element in N which is complemented in X,then Φ is Lie multiplicative (i.e.Φ([A,B])=[Φ(A),Φ(B)] for all A,B∈AlgN) if and only if Φ has the form Φ(A)=-TA*T-1+τ(A) for all A∈AlgN or Φ(A)=TAT-1+τ(A) for all A∈AlgN,where T is an invertible linear or conjugate linear operator and τ:AlgN→FI is a map with τ([A,B])=0 for all A,B∈AlgN.The Lie multiplicative maps are also characterized for the case dim X<∞.
出处 《Science China Mathematics》 SCIE 2011年第11期2453-2462,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10871111) Tian Yuan Foundation of China (Grant No. 11026161) Foundation of Shanxi University
关键词 Banach spaces nest algebras Lie ring isomorphisms Lie multiplicative maps 乘法映射 套代数 Banach空间 表征 同构 线性算子 AlGaN
  • 相关文献

参考文献10

  • 1Qi X F,Hou J C.Additivity of Lie multiplicative maps on triangular algebras[].Linear and Multilinear Algebra.
  • 2Martindale III W S.Lie isomorphisms of simple rings[].Journal of the London Mathematical Society.1969
  • 3Martindale III W S.Lie isomorphisms of prime rings[].Transactions of the American Mathematical Society.1969
  • 4Hou J C,,Zhang X L.Ring isomorphisms and linear or additive maps preserving zero products on nest algebras[].Linear Algebra and Its Applications.2004
  • 5L. W. Marcoux,and A. R. Sourour.Lie isomorphisms of nest algebras[].Journal of Functional Analysis.1999
  • 6Bai Z,Du S,Hou J.Multiplicative Lie isomorphisms between prime rings[].ComAlg.2008
  • 7Brear,M.Commuting traces of biaclditive mappings,commutativity-preserving mappings and Lie mappings[].Transactions of the American Mathematical Society.1993
  • 8Davidson. K. R.Nest algebras[].Pitman reseach notes in mathematics series.1988
  • 9M. I. Berenguer,,A. R. Villena.Continuity of Lie isomorphisms of Banach algebras[].Bulletin of the London Mathematical Society.1999
  • 10K. I. Beidar,M. Breast,M. A. Chebotar,and W. S. Mardindale.On Herstein‘s Lie Map conjectures I[].Trans Amer Math Soe.2001

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部