期刊文献+

基于边缘分布模型的基因选择方法 被引量:1

Marginal distribution model for gene selection
下载PDF
导出
摘要 一个微阵列数据集包含了成千上万的基因、相对少量的样本,而在这成千上万的基因中,只有一少部分基因对肿瘤分类是有贡献的,因此,对于肿瘤分类来说,最重要的一个问题就是识别选择出对肿瘤分类最有贡献的基因。为了能有效地进行微阵列基因选择,提出用一个边缘分布模型(marginal distribution model,MDM)来描述微阵列数据。该模型不仅能区分基因是否在两样本中差异表达,而且能区分出基因在哪一类样本中表达,从而选择出的基因更具有生物学意义。模拟数据及真实微阵列数据集上的实验结果表明,该方法能有效地进行微阵列基因选择。 A microarray data set contains thousands of genes, a small quantity of samples, and in the tens of thousands of genes, only a few genes that contribute to cancer classification. So, one basic and important question associated with cancer classification is to identify choose the classification of the most contribution cancer genes. In order to effectively microarray gene choice, a marginal dis- tribution model (MDM) is proposed to describe microarray data sets. Based on MDM, it not only can distinguish whether the gene is in two samples differentially expressed genes, and can distinguish which kind of samples expression. Consequently, the selected genes are more informative in the following analysis of the microarray. The results obtained from the simulated and real microarray data sets show that our method is performance well.
作者 段旭
出处 《计算机工程与设计》 CSCD 北大核心 2011年第11期3836-3839,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(51008143)
关键词 基因微阵列 基因选择 边缘分布模型 差异表达基因 EM算法 microarray gene selection marginal distribution model differentially expressed gene EM algorithm
  • 相关文献

参考文献2

二级参考文献33

  • 1李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 2Cho J H,Lee D,Park J H,et al.New gene selection for classification of cancer subtype considering within-class variation[J].FEBS Letters,2003,551:3-7.
  • 3Xiong M,Fang X,Zhao J.Biomarker identification by feature wrappers[J].Genome Research,2001,11:1878-1887.
  • 4Guyon I,Weston J,Barnhill S,et al.Gone selection for cancer classification using support vector machines[J].Machine Learning,2002,46:389-422.
  • 5Yang K,Li J Z,Gao H.The impact of sample imbalance on identifying differentially expressed genes[J].BMC Bioinformatics,2006,7(Suppl4).
  • 6Bolshakova N,Azuaje F.Cluster validation techniques for genome expression data[J].Signal Processing,2003,83:825-833.
  • 7Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man and Cybernetics-Part B:Cybernetics,1998,28:301-315.
  • 8Garey M R,Johnson D S.Computers and intractability:A guide to the theory of NP-completeness[M].San Francisco:W H Freeman and Company,1979.
  • 9Ng C K,Li D,Zhang L S.Discrete global descent method for discrete global optimization and nonlinear integer programming[J].Journal of Global Optimization,2007,37:357-379.
  • 10Alon U,Barkai N.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci USA,1999,96:6745-6750.

共引文献23

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部