期刊文献+

改进的抗全仿射尺度不变特征变换图像匹配算法 被引量:15

Improved fully affine invariant SIFT-based image matching algorithm
下载PDF
导出
摘要 针对现有匹配算法难以解决图像发生仿射变换特别是发生大视角变换时的有效匹配问题,本文对匹配稳定性较好的尺度不变特征变换(SIFT)算法进行了深入研究和改进。借鉴其模拟和归一化相结合的思想对相机光轴的经度角和纬度角进行模拟并采用SIFT算法进行匹配。结果显示,提出的算法不仅保留了SIFT原有的对仿射变换的抵抗能力,而且对视角变换也有很好的鲁棒性,实现了完全的抗仿射变换。实验结果表明,与传统的SIFT算法相比,本文算法对仿射变换尤其是有大视角改变时有更好的适应性。 In image matching process,the affine transformation is difficult to avoid.In exiting algorithms,Scale Invarian Feature Transform(SIFT) has strong resistance to changes of scale,rotation,translation and illumination changes generated by affine transformation.However,when an image has a view angle change,especially large change,the SIFT is not satisfactory.This paper researches the principle of the SIFT and improves its matching function.The latitude and longitude of camera axis are simulated firstly,and then the images are matched by using the improved SIFT algorithm.Experiments show that the algorithm not only retains the original advantages of the SIFT algorithm,but also been robust to changes of the angle.It has achieved a complete anti-affine transformation.In conclusions,the proposed algorithm is more suitable to affine transformation,especially large angle changes,as compared with SIFT algorithm.
作者 贺柏根 朱明
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第10期2472-2477,共6页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2005AA778032)
关键词 图像处理 尺度不变特征变换算法 特征匹配 仿射不变量 image processing Scale Inuariant Feature Transform(SIFT) algorithm feature matcing affine invariant
  • 相关文献

参考文献9

  • 1FAUGERAS O. Three-Dimensional Computer Vi- sion: A Geometric Viewpoint [M]. Boston: MIT Press, 1993.
  • 2MIKOLAJCZYK K, TUYTELAARS T, SCHMID C,et al.. A comparison of affine region detectors [J]. Int. J. Comput. Vis. , 2005,65:43-72.
  • 3LOWE D G. Distinctive image features from scale- invariant key points[J]. IJCV, 2004, 60 (2) : 91- 110.
  • 4MOREL J M, YU G. ASIFT A new framework for fully affine invariant image comparison[J]. SI- AM Journal on Imaging Sciences, 2009,2 (2) : 438- 468.
  • 5FAN Q, BARNARD K,AMIR A,et al.. Matching Slides to presentation videos using SIFT and scene background matching[C]. Proceedings of the 8th ACM International Workshop on Multimedia In- formation Retrieval, 2006 : 239-248.
  • 6KIM J, SEITZ S, AGRAWALA M. Video-based docu- ment tracking: Unifying your physical and electronic desktops[C]. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technolo- gy, 2004 : 99-107.
  • 7VACCHETTI L,LEPETIT V,FUA P. Stable real- time 3D tracking using online and offline informa- tion[J]. IEEE Trans. Pattern Anal. Mach. In- tell. , 2004,26:1385-1391.
  • 8BAY H, TUYTELAARS T, VAN GOOL L. Surf.. Speeded up robust features[J]. Computer Vision- ECCV 2006, Springer-Verlag, Berlin, Heidel- berg, 2006:404-417.
  • 9纪华,吴元昊,孙宏海,王延杰.结合全局信息的SIFT特征匹配算法[J].光学精密工程,2009,17(2):439-444. 被引量:70

二级参考文献2

共引文献69

同被引文献159

引证文献15

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部