期刊文献+

一类具有多个变时滞的p-Lapcaian中立型泛函微分方程的反周期解的存在性

Anti-periodic Solutions for a p-Laplacian Neutral Functional Differential Equation with Multiple Variable Parameters
下载PDF
导出
摘要 主要利用Leray-Schauder不动点定理和一些新的分析技巧,讨论了这类具有多个变时滞和变参数的p-Lapcaian中立型泛函微分方程:(φp(x'(t)-sun from i=1 to n(ci(t)x'(t-ri)))')=f(x'(t))+sun from j=1 to n(βj(t)g(x(t-τj(t)))+e(t))反周期解的存在性,得到了方程反周期解存在性的结论.这与已有的文献的结果不同,所考虑的方程更一般,从而所得的结果就更有广泛的意义. By means of Leray-Schauder fixed point theorem and some new analytical skills,a kind of p-Laplacian neutral functional differential equation with multiple variable parameters as follows:(φp(x'(t)-sun from i=1 to n(ci(t)x'(t-ri)))')=f(x'(t))+sun from j=1 to n(βj(t)g(x(t-τj(t)))+e(t)) was studied.A new result on the existence of anti-periodic solution was obtained,An example was given to illustrate the main results in this paper.The results are differential from the previous literatures,the equation considered is more general,which makes the results much more profound meaning.
出处 《佳木斯大学学报(自然科学版)》 CAS 2011年第5期770-774,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金项目(10771001) 高校博士点专项科研基金(20093401110001) 安徽省教育厅重点项目(KJ2009A005Z KJ2010ZD02) 安徽省教育厅自然科学基金项目(KJ2010B124) 亳州师专数学教育省级特色专业 亳州师专数学建模团队专项资金项目
关键词 反周期解 中立型泛涵微分方程 LERAY-SCHAUDER不动点定理 anti-periodic solution neutral functional differential equation Leray-Schauder fixed point theorem
  • 相关文献

参考文献2

二级参考文献12

  • 1Zhu Yanling,Lu Shiping.PERIODIC SOLUTION FOR p-LAPLACIAN DIFFERENTIAL EQUATION WITH A DEVIATING ARGUMENT[J].Annals of Differential Equations,2007,23(1):119-126. 被引量:5
  • 2Liu B.An anti-periodic LaSalle oscillationtheoremfor a class of functional differential equations[].Jour-nal of Computational and Applied Mathematics.2009
  • 3Li Y,Huang L.Anti-periodic solutions for a class of Liénard-type systems with continuously distributed delays[].Nonlinear Analysis.2009
  • 4Wang K.A newexistence result for nonlinear first-order anti-periodic boundary value problems[].Ap-plied Mathematics Letter.2008
  • 5Wang W,Shen J.Existence of solutions for anti-periodic boundary value problems[].Nonlinear Analy-sis.2009
  • 6Lu S.Existence of periodic solutions of ap-Laplacian neutral functional differential equation[].Nonlin-ear Analysis.2009
  • 7Peng S.Periodic solutions forp-Laplacian neutral Rayleigh equation with a deviating argument[].Nonlinear Analysis.2009
  • 8Chen Y Q,Wang X D,Xu H X.Anti-periodic solutions for semilinear evolution equations[].Journal of Mathematical.2002
  • 9Aizicovici S,Mckibben M,Reich S.Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities[].Nonlinear Analysis.2001
  • 10Lu.S.P,Ge.W.G,Zheng.Z.X.Periodic solutions to neutral functional differential equation with deviationg arguments[].Journal of Applied Mathematics.2004

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部