摘要
主要利用Leray-Schauder不动点定理和一些新的分析技巧,讨论了这类具有多个变时滞和变参数的p-Lapcaian中立型泛函微分方程:(φp(x'(t)-sun from i=1 to n(ci(t)x'(t-ri)))')=f(x'(t))+sun from j=1 to n(βj(t)g(x(t-τj(t)))+e(t))反周期解的存在性,得到了方程反周期解存在性的结论.这与已有的文献的结果不同,所考虑的方程更一般,从而所得的结果就更有广泛的意义.
By means of Leray-Schauder fixed point theorem and some new analytical skills,a kind of p-Laplacian neutral functional differential equation with multiple variable parameters as follows:(φp(x'(t)-sun from i=1 to n(ci(t)x'(t-ri)))')=f(x'(t))+sun from j=1 to n(βj(t)g(x(t-τj(t)))+e(t)) was studied.A new result on the existence of anti-periodic solution was obtained,An example was given to illustrate the main results in this paper.The results are differential from the previous literatures,the equation considered is more general,which makes the results much more profound meaning.
出处
《佳木斯大学学报(自然科学版)》
CAS
2011年第5期770-774,共5页
Journal of Jiamusi University:Natural Science Edition
基金
国家自然科学基金项目(10771001)
高校博士点专项科研基金(20093401110001)
安徽省教育厅重点项目(KJ2009A005Z
KJ2010ZD02)
安徽省教育厅自然科学基金项目(KJ2010B124)
亳州师专数学教育省级特色专业
亳州师专数学建模团队专项资金项目