期刊文献+

一种基于多循环频率的韧性时延与多普勒频移联合估计算法 被引量:4

A Robust Method for Joint Time Delay and Doppler Estimation Based on Multi-Cycle Frequencies
下载PDF
导出
摘要 本文提出了一种基于分数低阶循环模糊函数的多循环频率时延与多普勒频移联合估计算法.该方法将分数低阶矩与循环平稳特性相结合,能够在SαS(SymmetricαStable)脉冲噪声条件下检测信号的循环平稳特性.算法充分利用了信号的循环频率信息,具备较强的抑制干扰能力.仿真结果表明,在脉冲噪声和干扰环境中本文提出的算法均能稳定工作,估计性能优于基于二阶循环模糊函数和p阶循环模糊函数的算法,是一种韧性的时延与多普勒频移联合估计算法. A new method for joint time delay and Doppler shift estimation based on the fractional lower-order cyclic cross ambiguity function(FCCA) and multi-cycle frequencies is proposed.The relationship among fractional lower-order cyclic correlation,second-order cyclic correlation and pth-order cyclic correlation is analyzed.By using fractional lower-order cyclic statistics and exploiting cyclostationarity property of more than one cycle frequency,the new algorithm share the signal selectivity and is highly tolerant to SαS noise and interfering signals.The performances of different methods in various environments are tested in simulations.Simulation results indicate that the proposed algorithm outperforms the methods which is based on the conventional cyclic cross ambiguity function(CCA) and pth-order cyclic cross ambiguity function(PCCA) respectively.
作者 刘洋 邱天爽
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第10期2311-2316,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60872122)
关键词 循环平稳特性 对称α稳定分布噪声 模糊函数 时间延迟 多普勒频移 cyclostationarity symmetric α stable distribution(SαS) ambiguity function time delay Doppler shift
  • 相关文献

参考文献13

  • 1Ho K C, Im X N, Kovavisaruch L. Source location using TDOA and FDOA measuremems in the presence of receiver location errors: Analysis and solution [ J ]. IEEE Transactions on Signal Processing, 2(107,55 (2) : 684 - 696.
  • 2Ulman R J, Gerantiotis E. Motion detection using TDOA and FDOA measurements[ J] .IEEE Transactions on Aerospace and Electronic Systems, 2001,37(2) : 759 - 764.
  • 3Seymour S. Algorithms for ambiguity function processing[ J]. IEEE Transactions on Acoustics, Speech, and Signal Process- ing, 1981,29(3) :588 - 599.
  • 4Yao G X, Liu Z W, Xu Y G. TDOA/FDOA joint estimation in a correlated noise environment[ A]. IEEE International Sympo-sium on Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications Proceedings [ C ]. Beijing:Chinese Institute of Electronics, 2005. 831 - 834.
  • 5Shin D C,Nikias C L. Estimation of frequency-delay of arrival (FDOA) using fourth-order statistics in unknown correlated Gaussian noise source [ J ]. IEEE Transactions on Signal Processing, 1994,42(10) :2771 - 2780.
  • 6Tsihrintzis G A, Tureli U, Nikias C L. Fractional lower-order statistics-based ambiguity functions for differential delay Doppler estimation [J ]. lEE Proceedings, Radar, Sonar and Navigator, 1996,143 (6) :358 - 365.
  • 7Ma X Y, Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[ J]. IEEE Transactions on Signal Processing, 1996,44 ( 11 ) : 2669 - 2687.
  • 8Gardner W A, Napolitano A, Paura L. Cyclostationarity: Half a century of research[J]. Signal Processing, 2006,86(4) :639 - 697.
  • 9Huang Z T,Zhou Y Y,Jiang W L. Joint estimation of Doppler and time-difference-of-arrival exploiting cyclostationary property[ J]. lEE Proceedings, Part F: Radar and Signal Processing, 2002,149(4) : 161 - 165.
  • 10黄知涛,周一宇,姜文利.循环时延估计子性能分析[J].电子学报,2004,32(1):96-101. 被引量:4

二级参考文献23

  • 1Capon J.High-resolution frequency-wave number spectrum analysis[J].Proc IEEE,1969,57 (8):1408 -1418.
  • 2Van Veen B D,Buckley K M.Beamforming:a versatile approach to spatial filtering[J].IEEE Signal Processing Magazine,1988,(2):4 -24.
  • 3Shao M,Nikias C L.Signal processing with alpha-stable distributions and applications[M].New York:Wiley,1995.
  • 4Barroso A N,Moura M F.Maximum Likelihood Beamforming in the Presence of Outliers[C].VS:IEEE,1991,(2):1409-1412.
  • 5Kannan B,Fitzgerald W J.Beamforming in Additive Alpha-Stable Noiseusing Fractional Lower Order Statistics (FLOS)[C].VS:IEEE,1999,(3):5 -8.
  • 6Tsakalides P,Nikias C L.Robust Adaptive Beamforming in Alpha-Stable Noise Environments[C].VS:IEEE,1996,(5):2484 -2487.
  • 7Shao M,Nikias C L.Signal processing with fractional low order moments:stable processes and their application[J].Proc IEEE,1993,81 (7):986-1010.
  • 8Tsihrintzis G A,Nikas C L.Fast estimation of the parameters of alpha-stable impulsive interference[J].IEEE trans on SP,1996,44(6):1492 -1503.
  • 9Liu T h,Mendel J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE trans on SP,2001,49(8):1605-1613.
  • 10Haykin S.Adaptive filter theory[M].3rd ed,Englewood Cliffs,NJ:Prentice-Hall,1996.227-235.

共引文献19

同被引文献21

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部