期刊文献+

分路段交通状态模式元胞传递模型 被引量:2

Cell Transmission Model Under Different Patterns of Road Traffic State
下载PDF
导出
摘要 对城市快速路元胞传递(CTM)模型进行了研究.根据不同路段交通状态模式下,路段交通流动态特性的"可观测性"会由于交通信息传播方式差异而不同,提出了城市快速路分模式元胞传递模型.该模型更新了流量传输模型,将其表示为不同路段交通状态模式下的分段函数形式,并针对城市快速路构建了下匝道流量传输模型.以上海南北高架部分路段实际检测数据为例,测试比较了3种宏观元胞自动机模型,结论为分模式CTM模型性能最好.在将其应用于大规模数据测试时,密度估计结果平均百分比误差为20%左右,流量估计结果平均百分比误差为10%左右,仿真效果比较理想. A research was made of the cell transmission models on city expressway.The Pattern cell transmission model(CTM) was proposed based on that the observability of traffic flows' dynamic characteristic appeared to be different according the transmission methods of traffic information under different patterns of road traffic state.In Pattern CTM cell transmission model,the flow transmission model on main-road was updated to be expressed as the form of piecewise function and the flow transmission model on off-ramp was constructed against the city expressway.Taking the real data on Shanghai North-South Expressway as example,the performance of three CTMs were compared.The result shows that the Pattern CTM is the best of all.When the Pattern CTM is applied in large scales,the mean percent error(MPE) of density is around 20% and the MPE of flow is around 10%,which show that the simulation result is satisfactory.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期1473-1478,共6页 Journal of Tongji University:Natural Science
基金 国家"八六三"高技术研究发展计划(2007AA12Z242) 国家自然科学基金(50738004)
关键词 城市快速路 检测线圈数据 路段交通状态模式 元胞传递模型 city expressway loop detector data patterns of road traffic state cell transmission model
  • 相关文献

参考文献13

  • 1Daganzo C F. The cell transmission model., a dynamic representation of highway traffic consistent with the hydrodynamic theory [J]. Transportation Research Part B: Methodological, 1994,28 (4) : 269.
  • 2LAURA Matiana Mufioz. Macroscopic modeling and identification of freeway traffic flow[D]. Berkeley.. University of California,2004.
  • 3SUN Xiaotian. Modeling, estimation, and control of freeway traffic flow[D]. Berkeley.. University of California, 2005.
  • 4Gomes G,Hhrowitz R. Optimal freeway ramp metering using the asymmetric cell transmission model[J]. Transportation Research: Part C, 2006,14 (4) : 244.
  • 5孙亚,钱洪波,叶亮.数据挖掘算法在交通状态量化及识别的应用[J].计算机应用,2008,28(3):738-741. 被引量:5
  • 6王辉,王孝坤,王权.一种交通流状态智能推理系统[J].系统工程,2007,25(12):7-13. 被引量:4
  • 7胡小文,杨东援.城市快速道路交通流密度的估计[J].交通运输系统工程与信息,2008,8(3):79-82. 被引量:7
  • 8May A D. Traffic flow fundamentals[M]. [S. L ] .. Prentice Hall, 1990.
  • 9LIN Weihua,Dike Ahanotu. Validating the basic cell transmission model on a single freeway link[M]. Berkeley.. Universitv of California, 1994.
  • 10Cayford R,Lin W H, Daganzo C F. The netcell simulation package technical description, technical report[R]. Berkeley: University of California, 1997.

二级参考文献8

  • 1陈德旺,关积珍,朱雪良.基于占有率的交通流参数模型研究[J].交通运输系统工程与信息,2006,6(5):83-86. 被引量:7
  • 2王沫然.Matlab与科学计算[M].北京:电子工业出版社,2004..
  • 3HAND D, MANNILA H, SMYTH P. Principles of data mining [ M]. Cambridge: Massachusetts London England, The MIT Press, 2001:6 -8.
  • 4KIRSCHFINK H. Basic tools for fuzzy modeling[ C/OL]. [ 2007 - 09 - 15 ]. http://www. erudit.de/erudit/events/tc-c/03 _ Fuzzy- Modeling. pdf.
  • 5CHEN CHAO. Detecting errors and imputing missing data for single loop surveillanee systems[ C]// Proeeedings of 82nd Transportation Researeh Board (TRB) Annual Meeting, Washington, DC: IEEE Press, 2003:6 - 16.
  • 6ISHAK S. Quantifying uncertainties of freeway detector observations using fuzzy-clustering approach[ C]// Transportation Research Record, Transportation Research Board 82nd Ananual Meeting. Washington, DC: IEEE, 2003:2 - 7.
  • 7裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊,1999,21(3):320-325. 被引量:42
  • 8祖家奎,戴冠中,张骏.基于聚类算法的神经模糊推理系统结构和参数的优化[J].系统仿真学报,2002,14(4):501-503. 被引量:11

共引文献13

同被引文献16

  • 1许宏科,揣锦华,张华,樊海玮.公路隧道交通流的数据挖掘[J].长安大学学报(自然科学版),2005,25(4):66-69. 被引量:11
  • 2尚荣丽,张生瑞.高速公路隧道交通安全保障系统的研究[J].公路,2006,51(12):127-130. 被引量:31
  • 3张生瑞,马壮林,石强.高速公路隧道群交通事故分布特点及预防对策[J].长安大学学报(自然科学版),2007,27(1):63-66. 被引量:75
  • 4YEUNG J S, WONG Y D. The effect of road tunnel environment on car following behavior[J]. Accident Analysis & Prevention, 2014, 70: 100-109.
  • 5YEUNG J S, WONG Y D, XU H. Driver perspectives of open and tunnel expressways[J]. Journal of Environmental Psychology, 2013, 36: 248 256.
  • 6XU Huabing(徐华兵). Research of traffic flow operating characteristics and safety control methods based on the variation of visibility (基于能见度变化下交通流运行特性与安全控制方法研究)[D]. Hefei: Hefei University of Technology, 2012.
  • 7XU Zhiyi(徐之毅). Normal dark adaptation curve[J].眼科研究, 1984, 20(3): 152-153.
  • 8BALAKRISHNA R, ANTONIOU C, BEN-AKIVA M, et al. Calibration of microscopic traffic simulation models: methods and application[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1999(1999): 198-207.
  • 9SPILIOPOULOU A, KONTORINAKI M, PAPAGEORGIOU M, et al. Macroscopic traffic flow model validation at congested freeway off-ramp areas[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 18-29.
  • 10LIN Sheng(林声). Research on highway safety design theory based on alignments design consistency (基于线形设计一致性的公路安全设计理论研究)[D]. Beijing: Beijing Jiangtong University, 2014.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部