摘要
一般图的完美匹配计数问题是NP-困难的.用划分、求和、再递推的方法给出了2类特殊图完美匹配数目的计算公式.所给出的方法,可以计算出许多二分图的所有完美匹配的数目.作为应用,计算出了一类棋盘1×2的多米诺覆盖数目.
The problem of counting the number of the perfect matchings for general graphs is NP-difficult.In this paper,by applying differentiation,summation and re-recursion calculation,several counting formulas of the perfect matching for two specific types of graphs are given.Many bipartite graphs of the number of all perfect matchings can be calculated by the method presented in this paper.As an application,the number of one type chessboard of 1×2 of the dominoes covering has been calculated.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第5期16-21,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金(10671073)
上海市自然科学基金(07XD14011)
上海市重点学科建设基金(B407)
关键词
线性递推式
四角系统
棋盘
完美匹配
linear recurrence relation
polymino
chessboard
perfect matching