期刊文献+

圆形Rayleigh台阶腔体流动特性的数值模拟

Numerical simulation on flow characteristics of round Rayleigh step cavity
原文传递
导出
摘要 为了揭示流体流动特性对静压支承油腔承载力的影响,根据圆形Rayleigh台阶腔体流动特性,将流动分为三部分:入口中心对称碰撞流动、凹槽径向发散流动和节流边微流动.采用计算流体力学(CFD)方法建立计算模型,对腔体几何参数(e,h)和入口雷诺数(Re)等因素对流场涡胞的影响进行数值模拟.结果表明:Rayleigh台阶结构腔体内流动较平行圆盘间流动更加复杂,有涡胞结构存在;腔体内压强较高,具有更高的承载力;当200<Re<2 250时,流场中有1至4个不同数量的涡胞存在;随节流边厚度h(0.05~0.20 mm)和几何参数e(0.5~4.0)的增大,涡胞数量增多,尺寸增大,涡胞位置也发生变化;流体入口轴向速度对流场结构模拟结果有重要影响;同时,由于涡胞结构的影响,腔体壁面压强及近壁面速度分布是不均匀的. In order to reveal the effect of flow characteristics on the load capacity of oil cavity,the flow of round Rayleigh step cavity in hydrostatic lift was divided into three regions: the axisymmetric jet impinging flow,radial source flow and film flow.The computational fluid dynamics(CFD) method was used to build a calculation model and the influences of geometry(e,h) parameters and the Reynolds number on the vortices were simulated.The results show that there are complex vortices in the flow field of the round Rayleigh step cavity,of which the pressure is higher than parallel disks flow.The number of vortices is different from 1 to 4 with the Reynolds number of 200Re2 250.The number and size of vortices are increased,and location is changed with the increasing of h(0.05-0.20 mm) and e(0.5-4.0).The inlet velocity significantly affects the vortices structure and the distributions of wall pressure and velocity are uneven.
作者 申峰 刘赵淼
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2011年第5期781-786,803,共7页 Journal of China University of Mining & Technology
基金 科技部重大专项基金项目(2009ZX04002-031) 国家自然科学基金项目(11002007 11072011) 北京工业大学博士科研启动基金项目(X000105201101)
关键词 Rayleigh台阶 静压支承 节流边 涡胞 径向流动 Rayleigh step hydrostatic lift film land vortex radial flow
  • 相关文献

参考文献21

  • 1STACHOWIAK G W, BATCHELOR A W. Engi- neering tribology[M]. Boston: Butterworth-Heine- mann, 2001.
  • 2ARCHIALD F R. A simple hydrodynamic thrust bearing[J]. ASME Trans, 1950, 72(4): 393-400.
  • 3HAMROCK B J, ANDERSON W J. Rayleigh step journal bearing Part Ⅱ-ineompressible fluid [J]. J Lubr Teeh ASME Trans, 1969, 91(4): 641-50.
  • 4HAMROCK B J, ANDERSON W J. Incompressibly lubricated Rayleigh step journal bearing I-zero-order perturbation solution: USA, TND-4839 [P]. 1968- 10-22.
  • 5SCHULLER F T. Experiments on the stability of water-lubricated Rayleigh step hydrodynamic journal bearings at zero load: USA, TND-6514 [P]. 1971- 10-15.
  • 6AULOGE J Y, BOURGIN P, GAY B. The optimum design of one-dimensional bearings with non-Newto- nian lubricants [J]. J Lubr Tech ASME Trans, 1983, 105.. 391-395.
  • 7JIANMING W, GAOBING J. The optimal design of the Rayleigh slider bearings with a power law fluid [J]. Wear, 1989, 129: 1-11.
  • 8TELLO J I. Regularity of solutions to a lubrication problem with discontinuous separation data[J]. Non- linear Anal, 2003, 53: 1167-77.
  • 9NADUVINAMANI N B, SIDDANGOUDA A. Ef- fect of surface roughness on the hydrodynamic lubri- cation of porous step-slider bearings with couple stress fluids[J]. Tribol Int, 2007, 40:780-93.
  • 10RAHMAN1 R, SHIRVANI A, SHIRVANI H. Analytical analysis and optimization of the Rayleigh step slider bearing[J]. Tribot lnt, 2009, 42. 666- 674.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部