摘要
主要讨论时标上二阶中立型动力方程(x(t)-sum pi(t)x(t-τ))from i=1 to n△△+=sum fi(t,x(t-δi))from i=1 to n=0的振动性,其中pi∈Crd(T,R+),τ,δi∈(0,∞),使得对所有t∈T,有t-τ,t-δi∈T,fi∈C(T×R,R),i=1,2,…,n。利用导数的符号来判断解的性质,通过不等式的放缩,得到结论,并得到所有解振动的充分条件。
The author mainly discusses the oscillation property of this dynamic equation:(x(t)-sum pi(t)x(t-τ))from i=1 to n△△+=sum fi(t,x(t-δi))from i=1 to n=0 Sufficient conditions of the solution of the oscillation property have been found.
出处
《山西大同大学学报(自然科学版)》
2011年第5期12-14,81,共4页
Journal of Shanxi Datong University(Natural Science Edition)
关键词
时标
中立型动力方程
振动
time scale
neutral dynamic equation
oscillation