期刊文献+

降雨-径流条件下混合层深度模拟试验 被引量:5

Simulated experiment of mixing zone depth under rainfall-runoff conditions
下载PDF
导出
摘要 混合层深度是非点源污染模型中一个重要参变量,在模拟土壤溶质随地表径流迁移流失过程中,它决定了参与径流迁移的土壤溶质的范围及其具体流失量,为现有模型参数校正提供一定的数据支持。通过设计3种水文条件即自由排水状态(-5cm)、土壤水分饱和状态和土壤渗流状态(5cm),采用人工模拟3种降雨强度(3,6和9cm/h),及同时分别外加模拟相对于降雨量的0,2,4和10倍径流量,研究土壤溶质迁移到地表径流过程中混合层深度。试验结果表明混合层深度与降雨强度呈线性增加关系;自由排水条件下,与地表径流量呈复杂正比例增加关系;土壤饱和条件和土壤渗流条件下,混合层深度与地表径流量均呈线性增加关系。研究结果发现混合层深度的实质是一个多向、复杂的动态溶质迁移变化量。 Mixing zone depth is an important parameter in chemical transport from soil into surface runoff,which implies chemical transport extent and loss.It provides the basic data for calibrating the model parameter.An indoor experiment was conducted to study the mixing zone depth during chemical transport from soil to runoff.Different vertical hydraulic gradients were imposed by setting the flow cell to free drainage condition(-5 cm),saturation condition and artesian seepage conditions(5 cm) under simulated rainfall at 3,6 and 9 cm/h and simulated flow rate to rainfall at 2,4 and 10 times of simulated rainfall.Results showed that mixing zone depth increased linearly with rainfall intensity.The mixing zone depth increased inversely with runoff flow rate under free drainage condition,but increased linearly under artesian seepage conditions.Thus the mixed zone depth is a multi-directional,complex dynamic chemical transfer quantity.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第11期188-192,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 博士后基金(20110490402) 美国农业部项目--土壤水动力及其在土壤侵蚀和水质的有效管理项目(3602-12220-009-00) “973”课题(2011CB409901) 国家自然科学基金青年基金(51109115)
关键词 土壤 渗流 径流 土壤溶质迁移 降雨 混合层深度 soils seepage runoff soil chemical transport rainfall mixing zone depth
  • 相关文献

参考文献5

二级参考文献35

  • 1Ahuja L R,Lehmen O R. The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff [J]. Journal of Environmental Qualuty, 1983,12: 34-40.
  • 2Zhang X C,Norton L D,Lei T,at al. Coupling mixing zone concept with convection diffusion equation to predict chemical transfer to surface runoff [J]. Transactions of the ASAE, 1999,42 : 987-994.
  • 3Wallach R. Transfer of chemical from solution to surface runoff: A diffusion-based soil model [J]. Soil Sci Soc Am J, 1988, 52:612-618.
  • 4Wang Q J, Horton R,Shao M A. Effective raindrop kinetic energy influence on soil potassium transport into runoff [J]. Soil Science,2002,167(6) :369-376.
  • 5Havis R N, Smith R E, Adrian D D. Partitioning solute transport between infiltration and overland flow under rainfall [J]. Water Resour Res, 1992,28(10) : 2569-2580.
  • 6Sharpley A N. An improved soil sampling procedure for the prediction of dissolved inorganic phosphate concentrations in surface runoff from pasture [J]. J Environ Qual, 1978,7: 455- 456.
  • 7Lehman O R,Ahuja L R. Interflow of water and tracer chemical on sloping field plots with exposed seepage faces [J]. Journal of Hydrology, 1985,76 : 307-317.
  • 8Donigian A S. Simulation of nutrient loading in surface runoff with the NPS model [M]. Athens, GA:US Environmental Protection Agency, 1977.
  • 9Knisel W. CREMS:a field scale model for chemicals, runoff,and erosion from agricultural management systems [R]. U S Department of Agriculture, Conservation Research Report, 1980,26 : 640-641.
  • 10Warriek A W. Soil water dynamics [M]. Oxford:Oxford University Press, 2003.

共引文献57

同被引文献75

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部