期刊文献+

三腈基呋喃推拉型电荷转移分子的双光子吸收 被引量:3

Two-photon Absorption of a Push-pull Type Intramolecular Charge Transfer Molecule Including Tricyanofuran
原文传递
导出
摘要 根据双光子吸收效应与分子之间"构效"关系,设计四种D-π-A推拉偶极型电荷转移分子,采用AM1方法计算出分子三阶极化率,筛选出具有潜在三阶非线性光学活性分子2-(3-腈基-(3-(4-(二甲胺基)苯乙烯基)-5,5-二甲环己基-2-烯)甲基)-5,5-二甲基呋喃-2-烯)丙二腈(CFM).首次在温和条件下使酮羰基与TCF(2-(3-腈基-4,5,5-三甲基呋喃-2-烯)丙二腈)的活泼甲基通过Knoevenagel反应合成出目标分子.通过非线性透过率法研究了CFM的双光子吸收性质,采用Ti:Sapphire激光器在800 nm,150 fs激光激发下测得了CFM的双光子吸收截面σ2,在DMF溶剂中达到104.29 GM,在CH2Cl2溶剂中达到78.22 GM.CFM具有较强的双光子吸收特性和光限幅效应. Four D-π-A push-pull type charge transfer molecules were designed basing on the relationship between two-photon absorption and the structure.AM1 method was used to calculate the three-order po-larizabilities of the four molecules and the molecule CFM(2-(3-cyano-(3-(4-(dimethyl-amino)styryl)-5,5-dimethylcyclohex-2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene)malononitrile) was selected out.TCF(2-(3-cyano-4,5,5-trimethylfuran-2-ylidene)malononitrile) used as electronic accepter,N,N-dimethyl-aniline moiety was used as electronic donor,isophorone(3,5,5-trimethylcyclohex-2-enone) as conjugate bridge.CFM was synthesized by Knoevenagel reaction under mild conditions between lively methylene of TCF and ketone.The three-order nonlinear optical property of CFM was got with experiment methods.Us-ing a 800 nm 150 femtosecond Ti:sapphire laser,the CFM's two-photon absorption(2PA) cross-sections reach 104.29 GM(GM=10-50 cm4·s·photon-1) in DMF and 78.22 GM in CH2Cl2 which obtained by nonlinear transmission method.The CFM has the property of two-photon absorption and optical power lim-iting.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2011年第20期2499-2504,共6页 Acta Chimica Sinica
基金 国家自然科学基金(No.61178057)资助项目
关键词 三阶极化率 KNOEVENAGEL反应 双光子吸收 推拉型分子 three-order polarizability Knoevenagel reaction two-photon absorption push-pull type mole-cule
  • 相关文献

参考文献20

  • 1Yang, Y.; Zhou, Y.; He, Q.; He, C.;Yang, C.; Bai, E; Li, Y. J. Phys. Chem. B 2009, 113, 7745.
  • 2Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
  • 3Lord, S. J.; Conley, N.R.; Lee, H. L. D.; Samuel, R.; Liu, N.; Twieg, R. J.; Moerner, W. E. J. Am. Chem. Soc. 2008, 130, 9204.
  • 4Jiang, G.; Song, Y.; Guo, X.; Zhang, D.; Zhu, D. Adv. Mater 2008, 20, 2888.
  • 5He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, E N. Chem. Rev. 2008, 108, 1245.
  • 6Bhaskar, A.; Guda, R.; Haley, M. M.; Goodson, T. G. J. Am. Chem. Soc. 2006, 128, 13972.
  • 7Kannan, R.; He, G. S.; Lin, T. C.; Prasad, E N.; Vaia, R. A.; Tan, L. S, Chem. Mater. 2004, 16, 185.
  • 8Kogej, T.; Beljonne, D.; Meyers, E; Perry, J. W.; Marder, S.R.; Bre'das, J. L. Chem. Phys. Lett. 1998, 298, 1.
  • 9Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G. Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater 1998, 10, 1863.
  • 10Beverina, L.; Fu, J.; Leclercq, A.; Zojer, E.; Pacher, P.; Barlow, S.; Stryland, E. W. V.; Hagan, D. J.; Bre'das, J. L.; Marder, S. R. J. Am. Chem, Soc. 2005, 127, 7282.

同被引文献9

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部