期刊文献+

基于古斯-汉欣位移效应的波长传感研究 被引量:6

Wavelength Sensing Based on the Goos-Hnchen Effect
下载PDF
导出
摘要 利用双面金属包覆波导在导模共振激发时对古斯-汉欣位移具有极大的增强效应来实现激光波长微小变化的监测.双面金属包覆波导由上层金膜、导波层和下层金膜组成.当导波层厚度为亚毫米尺度时,应用自由空间耦合技术使入射的激光以小角度入射,在满足相位匹配的条件下激发超高阶导模.理论研究表明,当波导的辐射损耗等于本征损耗时,反射光的侧向位移可达到数百微米,并且此时激发的超高阶导模对波长具有极强的色散能力.通过测量反射光的侧向位移可实现对激光波长变化的实时探测,且具有很高的灵敏度.同时,实验中探测信号只与光束位置相关,可有效避免因光源输出光强的波动带来的干扰.实验测量结果表明对激光波长在859nm附近的分辨率可达到0.2pm. The Goos-Haenchen effect, which is enhanced by the resonance of the guided mode in a symmetrical metal-cladding waveguide with submillimeter scale, is used to detect the slight variation of wavelength. The symmetrical metal-cladding waveguide consists of a guiding layer and two metal-cladding layers. When the laser beam incidents on the surface of the coupling prism with a small incident angle,the ultrahigh-order mode will be excited under the phase-matching condition, which exhibits a strong dispersion ability of the wavelength. Theoretical analysis indicates that the GH lateral shift is closely related to the intrinsic and radiative dampings of the waveguide. As the two dampings of SMCW approach to the best matching condition, the GH shift will exhibit a great enhancement and the lateral GH shift may reach several hundreds of microns. Since the detecting signal is proportional to the displacement of the light beam,the measurement will not be affected by the fluctuation of the light intensity. A wavelength resolution of 0.2 pm near the wavelength of 859 nm is demonstrated in experiment.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第10期1595-1598,共4页 Acta Photonica Sinica
基金 国家自然科学基金(No.61168002) 国家重点实验室开放基金(No.2011GZFO31105)资助
关键词 双面金属包覆波导 超高阶导模 古斯-汉欣位移 波长传感 Symmetrical metal-cladding waveguide Ultrahigh-order mode Goos-Hiinchen effect Wavelength sensing
  • 相关文献

参考文献12

  • 1张祖兴,戴国星,况庆强,桑明煌,叶志清.基于受激布里渊散射的波长间隔可变多波长光纤激光器[J].光子学报,2010,39(5):815-819. 被引量:10
  • 2YAMADA E, TAKARA H, OHARA T, et al. 150 channel supercontinuum CW optical source with high SNR and precise 25GHz. spacing for 10 Gbit/s DWDM systems[J]. Electr(m Lett,2001,37(5):304-306.
  • 3VEI.DHUIS G J,PAEEIAUX 0, LAMBECK P V. Normalized analysis for the optimization of geometric wavelength dispersion in three-layer slab waveguides[J]. OptCOrnmum, 1999,163(4) : 278-284.
  • 4PARK Y, I.EE S, CHAE C. A novel wavelength stabilization scheme using a fiber grating for WDM transmission[J]. IEEE Pt2otonics Technol Lett, 1998,10(10) : 1446-1448.
  • 5魏昕,赵建林,周王民,樊帆.光纤布喇格光栅中心波长反向漂移的实验研究[J].光子学报,2009,38(1):78-81. 被引量:1
  • 6YANG C,LEE S, WU J. Wavelength control of tunable dense wavelength-division multiplexing :sources by use of a Fabry Perot etalon and a semiconductor optoelectronic diode[J]. ApplOpt, 2004, 43(9):1914-1921.
  • 7NASU H, TAKAGI T, SHINAGAWA T, et al. A highly stable and reliable wavelength monitor integrated laser module design[J]. Journal Lightzvave Technol, 2004,12 ( 5 ) : 1344- 1351.
  • 8冯耀军,曹庄琪,陈麟,沈启舜.分辨率为1pm的波长监测新方法[J].物理学报,2006,55(9):4709-4712. 被引量:5
  • 9CHEN Lin, CAO Zhuang qi, SHEN Qi shun,et al. Wavelength sensing with subpicometer resolution using ultrahigh order modes[J]. Journal Lightztve Techno1,2007,25(2) :539-543.
  • 10ARTMANN K. Berechnung der Seitenversetzung des totalreflektierten Strahles [J]. Ann Pity, 1948, 437 ( 1 ) : 87- 102.

二级参考文献23

共引文献13

同被引文献80

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部