期刊文献+

利用单幅投影图像重建不对称客体密度分布 被引量:1

Density reconstruction for asymmetric object from single radiograph
下载PDF
导出
摘要 针对高能X射线照相系统成像数目受到限制的现状,研究了利用单幅投影图像重建具有部分不对称性结构物体的密度分布的方法,提出了利用图像的对称和不对称信息,并结合先验信息构造多角度投影图像的方法。研制了基于全变分和代数重建技术的3维密度重建程序,并通过仿真实验,定量给出了图像数目对密度重建精度的影响规律。数值仿真结果表明:当投影图像数目达到一定值后,重建密度误差的变化变得很缓慢,重建密度的误差随图像数目的增加而减小,在只有少数投影图像的密度重建时,误差减小较为明显,从性价比的角度来说,10幅图像最佳。 Due to the limited number of views in high-energy X-ray radiography,the density reconstruction for asymmetric objects from a single radiograph is studied.The approach proposed can make explicit use of model-based information concerning the symmetric and asymmetric information from the radiograph to compose the other rotational views in a more exact fashion.The three dimension program for the density reconstruction is developed based on total variation and algebraic reconstruction techniques.Numerical simulations show the impact on the accuracy of density reconstruction by varying the number of the radiographic views.
作者 胡渊 许海波
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第9期2507-2511,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(10971244) 中国工程物理研究院科学技术发展基金项目(2009B0202020)
关键词 密度重建 全变分 代数重建技术 不对称客体 density reconstruction total variation algebraic reconstruction techniques asymmetric object
  • 相关文献

参考文献9

  • 1Cunningham G S, Morris C. The development of flash radiography[J]. Los ALamos Science, 2003 (28) : 76-91.
  • 2Hanson K M. Tomographic reconstruction of axially symmetric objects from a single radiograph[C]//Proceedings of 16th International Con ference on High Speed Photography and Photonics. 1984, 491:180 187.
  • 3魏素花,王双虎,许海波.轴对称物体X射线层析成像的正则化方法[J].中国图象图形学报,2008,13(12):2275-2280. 被引量:3
  • 4Pang T F. AWE multi axis radiographic facility: a review of 3I>reconstructions from limited data[C]//Bayesian Inference and Maximum En- tropy Methods in Science and Engineering: 20th International Workshop. AIP conference, 2001, $68:521 530.
  • 5Sauer K, Sachs J, Klifa C. Bayesian estimation of 3-D objects {rom few radiographs[J]. IEEE Trans on Nuclear Science, 1994, 41(5) : 1780 1790.
  • 6刘军,刘进,施将君,刘瑞根,管永红,肖智强.利用数值模拟测量闪光照相中H-D曲线[J].强激光与粒子束,2007,19(7):1221-1225. 被引量:2
  • 7NormanB, DanS, CharlesM, et al. Research on computed tomography reconstructions from one or two radiographs: a report and theappli cation to FXR radiography[R~. UCRLID-120019, 1995.
  • 8Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X ray pho tography[J]. Journal of Theoretical Biology, 1970, 29(3):471 481.
  • 9Emil Y S, Kao C, Pan X. Accurate image reconstruction from few views and limited angle data in divergent beam CTc[J]. Jr*urna! o/X- Ray Seiezzce and Teehnology, 2006, 14(2) :119-139.

二级参考文献19

  • 1管永红,王润生,施将君,刘军.闪光照相条件下相对质量吸收系数的测量[J].强激光与粒子束,2004,16(12):1629-1632. 被引量:3
  • 2施将君,刘军,刘进,李必勇.闪光照相中源尺寸和散射对成像的影响[J].强激光与粒子束,2006,18(10):1727-1730. 被引量:4
  • 3Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X- ray photography[ J]. Journal of Theoretical Biology, 1970, 29 (3) : 471 -481.
  • 4Asaki T J, Chartrand R, Vixie K R, et al. Abel inversion using total variation regularization : applications [ R ], LA-UR-05-2657, USA : Los Alamos National Laboratory, 2005.
  • 5Asaki T .l, Chartrand R, Vixie K R, et al. Abel inversion using total variation regularization [ J ]. Inverse Problems, 2005, ( 21 ) : 1895 - 1903.
  • 6Hanson K M, Cuningham G M, Jennings G R. Tomographic reconstruction based on flexible geometric models [ A ]. In: Proceedings of 1994 International Conference on Image Processing [C], Austin, Texas, USA, 1994, 2:145-147.
  • 7Hanson K M. A bayesian approach to nonlinear inversion: abel inversion from X-ray attenuation data [ A ]. Transport Theory, Invariant Imbedding, and Integral Equations [ M ], Lecture Notes in Pure and Applied Mathematics, edited by Nelson P, et al, New York : Dekker Press, 1989:363 - 378.
  • 8Hanson K M. Special topics in test methodology: tomographic reconstruction of axially symmetric objects from a single dynamic radiograph [ R ]. LA-UR-87-1670, USA: Los Alamos National Laboratory, 1993.
  • 9Hanson K M. Tomographic reconstruction of axially symmetric objects from a single radiograph [ A ]. In: Procedings of 16th International Conference on High Speed Photography and Photonies [ C ], Strasbourg, Fracne, 1984,491,180 - 187.
  • 10Bresler Y, Fessler J A, Macovski A. A bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11($) :840 -858.

共引文献3

同被引文献33

  • 1Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60:259 -268.
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell, 1990, 12:629- 639.
  • 3Mumford D, Shah J. Optimal approximations by piecewise smooth fnnctions and associated variational problems. Comm Pure Appl Math, 1989, 42:577- 685.
  • 4Chan T F, Shen 3 H. Inmge Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Philadel- phia: SIAM, 2005.
  • 5Vese L M. Variational Methods in Image Processing. London: Chapman & HaI1/CRC Press, 2015.
  • 6Li M, Feng X C. Image restoration nsing total variation and anisotropic diffusion equation. Front Electr Electron Eng China, 2007, 2:400 -403.
  • 7tIanke M, Nagy J, Plemmons R J. Preconditioned iterative regularization for ill-posed problems. In: Numerical Linear Algebra. Berlin: Walter de Gruyter Publishers, 1993, 141- 164.
  • 8Vogel C R, Chan T F, Plemmons R J. Fast algorithms for phase diversity-based blind deconvolution. In: Adaptive Optical System Technologies, SPIE Proceedings Conference oil Astronomical Imaging. Bellingham: International Society for Optics and Photonics, 1998, 994: 1005.
  • 9Chen ,l J, Guo J. Image restoration based on adaptive P-Laplace diffusion. In: Proceedings of the 3rd International Congress on hnage and Signal Processing (CISP), vol. 1. Yantai: IEEE, 2010, 143-146.
  • 10Xu Z B, Chang X Y, Xu F M. L-l2 regularization: A thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn Syst, 2012, 23:1013-1027.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部