期刊文献+

一种结合半监督Boosting方法的迁移学习算法 被引量:4

Transfer Learning via Semi-supervised Boosting Method
下载PDF
导出
摘要 迁移学习是数据挖掘中的一个研究方向,试图重用相关领域的数据样本,将相关领域的知识"迁移"到新领域中帮助训练.当前,基于实例的迁移学习算法容易产生过度拟合的问题,不能充分利用相关领域中的有用数据.为了避免这个问题,通过引入目标领域的无标记样本参与训练,利用半监督Boosting方法,提出一种新的迁移学习算法,能够对样本的相关性进行更好的判断,减少选择性偏差的影响.在大量文本数据集上的实验表明了新算法的有效性. Transfer learning aims at reusing existing instances from other related domains to help learning models for the target domain. Existing algorithms in instance-transfer learning might easily suffer from the problem of overfitting. To address this problem, we propose to incorporate additional unlabeled instances from the target domain, so that more domain knowledge can be brought into the training process. Specifically, under the generalized framework of boosting methods, we show that a semi-supervised boosting method can be applied to help re-weighting the source domain instances, making the final classifiers less sensitive to the small amount of labeled instances in the target domain. Extensive experiments confirm the efficiency of the new algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第11期2169-2173,共5页 Journal of Chinese Computer Systems
基金 广东科技计划项目(2008B050100040)资助
关键词 迁移学习 跨领域学习 BOOSTING算法 半监督学习 transfer learning cross-domain learning Boosting semi-supervised learning
  • 相关文献

参考文献11

  • 1Pan S J, Yang Q. A survey on transfer learning [ J]. IEEE Trans- actions on Knowledge and Data Engineering, 2010,22 ( 10 ) : 1345 - 1359.
  • 2Dai W, Yang Q, Xue G, et al. Boosting for uansferleamig[ C]. In Proceedings of the 24th International Conference on Machine Learn- ing, 2007:193-200.
  • 3Zhu X. Semi-supervised learning literature survey [R]. Madison: Department of Computer Sciences, University of Wisconsin,2005.
  • 4姜远,黎铭,周志华.一种基于半监督学习的多模态Web查询精化方法[J].计算机学报,2009,32(10):2099-2106. 被引量:2
  • 5Bennett K P,Demifiz A, Maclin R. Exploiting unlabeled data in ensemble methods [ C]. In Proceedings of the 8th Knowledge Dis- cover), and Data Mining, 2002:289-296.
  • 6Shi Y, Lan Z, Liu W, et al. Extending semi-supervised learning methods for inductive transfer learning [ C]. In Proceedings of the 9th International Conference on Data M/ning, 2009:483-492.
  • 7Xie S, Fan W, Peng J, et al. Latent space domain transfer between high dimensional overlapping distributions CC]. In Proceedings of the 18th International Conference on World Wide Web, 2009:91- 100.
  • 8Pan S J, Ni X,-Sun J, et al. Cross-domain sentiment classification via spectral feature alignment [ C ]. In Proceedings of the 19th In- ternational Conference on World Wide Web, 2010:751-760.
  • 9Freund Y, Schapire R E. A decision-theoretic generalization of on- line learning and an application to boosting [J]. Journal of Com- puter and System Sciences, 1997,55 : 119-139.
  • 10Mason L, Baxter J, Bartlett P, et al. Functional gradient tech- niques for combining hypotheses [ A]. In: SchoIkopf B, Smola A, Bartlett P, et 81 ed. Advances in Large Margin Classifiers [ C]. Cambridge: MIT Press, 2000:221-246.

二级参考文献28

  • 1Silverstein C, Henzinger M, Marais H, Moricz M. Analysis of a very large AltaVista query log. Digital Systems Research Center, Technical. Report 1998-014, 1998.
  • 2Blum A, Mitchell T. Combining labeled and unlabeled data with co-training//Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison, WI, 1998: 92-100.
  • 3Rocchio J J. Relevance feedback in information retrieval// Salton G ed. The SMART Retrieval System. Englewood Cliffs, NJ: Prentice-Hall, 1971.
  • 4Ide E. New experiments in relevance feedback//Salton G ed. The SMART Retrieval System. Englewood Cliffs, NJ: Prentice-Hall, 1971.
  • 5Salton G, Buekley C. Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 1990, 37(4): 288-297.
  • 6Robertson S, Jones K S. Relevance weighting of search terms. Journal of the American Society for Information Science, 1976, 27(3): 129-146.
  • 7Robertson S. On term selection for query expansion. Journal of Documentation, 1990, 46(4): 359-364.
  • 8Harman D. Relevance feedback revisited//Proceedings of the 15th ACM International Conference on Research and Development in Information Retrieval. Copenhagen, Denmark, 1992, 1-10.
  • 9Spark Jones K. Automatic Keyword Classification for Information Retrieval. London, UK: Butterworths, 1971.
  • 10Qiu Y, Frei H P. Concept based query expansion//Proceedings of the 16th ACM International Conference on Research and Development in Information Retrieval. Pittsburgh, PA, 1993:160-169.

共引文献1

同被引文献17

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部