期刊文献+

基于雁群启示的粒子群优化算法的几何约束求解 被引量:6

Geometric Constraint Solving Based on GeesePSO Optimization
下载PDF
导出
摘要 几何约束是约束求解技术中最关键的问题之一.求解一个几何约束问题的最终目的是确定几何图形中每一个几何体的具体坐标位置.几何约束问题可以等价为求解非线性方程组问题.约束问题转化为一个优化问题.本文采用基于雁群启示的粒子群优化算法来求解该问题.该算法受雁群飞行特征启发,一方面将粒子排序,每个粒子跟随其前面那个较优粒子飞行,保持了多样性;另一方面使每个粒子利用更多其他粒子的有用信息,粒子之间的竞争被增强.两个方面的结合将平衡速度和精度之间的矛盾.实验表明,该方法可以提高几何约束求解的效率和收敛性. Geometric constraint solving is a key issue in constraint solving technology. The ultimate goal of geometric constraint solving is to determine the geometry of the specific geometry of each coordinate position. Geometric constraint problem is equivalent to the problem of solving a set of nonlinear equations substantially. The constraint problem can be transformed to an optimization n problem. We can solve the problem with GeesePSO optimization. In this paper, an improved algorithm is proposed using the characteristics of the flight of geese for reference. The algorithm is inspired by the wild geese flying characteristics. The improved algorithm has superiority over PSO; for one thing, it keeps the population various by ordering all the particles and making each particle fly following its anterior particle; for another thing, it strengthens cooperation and competition between particles by making each particle share more useful information of the other particles. Combination of both to some extent, the algorithm searches balance the conflict between speed and accuracy. The experiment shows that it can improve the geometric constraint solving efficiency and possess better convergence property than the compared algorithms.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第11期2299-2302,共4页 Journal of Chinese Computer Systems
基金 中央高校基本科研业务费专项资金项目(N100404002)资助 地质灾害防治与地质环境保护国家重点实验室开放基金项目(SKLGP2011K004)资助 南京大学计算机软件新技术国家重点实验室开放课题基金项目(KFKT2011B14)资助
关键词 几何约束求解 粒子群优化算法 雁群飞行 Geometric constraint solving particle swarm optimization flight of geese
  • 相关文献

参考文献6

二级参考文献41

共引文献50

同被引文献33

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部