期刊文献+

缓冲气压对CO_2激光Al靶等离子体参量的影响 被引量:4

Analysis of the properties of CO_2 laser-induced aluminum plasma at different ambient pressures
下载PDF
导出
摘要 为了研究缓冲气压对激光等离子体参量的影响,利用CO_2,激光烧蚀A1靶产生等离子体,缓冲气压变化范围为10^(-4)Pa~2×10~3Pa,激光脉冲能量为180mJ/脉冲,在局域热平衡和光学薄等离子体假设下,采用发射光谱法计算了等离子体的电子温度和电子密度,并研究了缓冲气压对这些参量的影响。结果表明,等离子体的电子温度和电子密度分别在1.05eV~2.47eV与1.95×10^(16)cm^(-3)~10.5 × 10^(16)cm^(-3)范围内,Al等离子体的电子温度随气压的增大而减少;低缓冲气压时,电子密度随气压增大而减小,当气压达到600Pa时,激光脉冲会击穿空气形成等离子体,电子密度又开始上升,当气压超过3000Pa时,空气等离子体会屏蔽激光脉冲能量,使到达靶面的激光能量急剧下降,Al原子的特征谱线也随之减弱而几乎消失。这一结果对理解缓冲气压对激光与物质相互作用过程的影响是有帮助的。 In order to study the properties of laser-induced plasma at different ambient pressures, emission spectroscopy was studied on aluminum plasma generated by CO2 laser with energy of 180mJ/pulse at different air ambient pressures. The dependency of plasma temperature and density on ambient pressures were estimated from the analysis of spectral data by assuming the conditions of local thermodynamic equilibrium and optically thin plasma. Electron temperature was measured in the range of 1.05eV -2. 47eV, and electron density was measured in the range of 1.95×10^16cm-3-10.5×10^16cm-3 as the ambient pressure was varied from 10-4Pa to 2 ×10^3pa. The results show that the plasma temperature decreases with the ambient pressures. At first, the electron density decreases with the increase of ambient pressure under low pressure. When the pressure reaches 600Pa, the broken air plasma may interact with A1 vapor and the electron density increases with the pressure increasing. For larger ambient pressure up to 3000Pa, the A1 emission lines eventually disappear, suggesting that the laser energy is almost screened by the air plasma. The results provide useful guidance to understand the influence of air pressure on laser-matter interaction.
出处 《激光技术》 CAS CSCD 北大核心 2011年第6期800-803,共4页 Laser Technology
关键词 激光技术 等离子体光谱 电子密度 电子温度 laser technique plasma spectroscopy electron density electron temperature
  • 相关文献

参考文献4

二级参考文献46

  • 1方尔梯,黄正宇,张谊华,何波,张抗战,李作坤,曾宪康.激光烧蚀Al表面溅射Al正离子的平动能分布测定和机理研究[J].应用激光,1993,13(6):241-244. 被引量:6
  • 2陆同兴,崔执凤,赵献章.激光等离子体镁光谱线Stark展宽的测量与计算[J].中国激光,1994,21(2):114-120. 被引量:16
  • 3崔执凤,黄时中,陆同兴,凤尔银,赵献章,路软群,马军.激光诱导等离子体中电子密度随时间演化的实验研究[J].中国激光,1996,23(7):627-632. 被引量:18
  • 4郑乐民 徐庚武.原子结构与原子光谱[M].北京:北京大学,1996.253.
  • 5G. Befeki. Principles of Laser Plasmas [M]. New York:Willey Interscience, 1976. 550-627.
  • 6H. R. Griem. Plasma Spectroscopy [M]. New York:McGraw-Hill, 1964. 139-140.
  • 7W. Lochte-Holtgreven. Evalution of Plasma Parameter in Plasma Diagnostics [M]. North-Holland, Amsterdam, 1968.156-157.
  • 8S. Yalcin, D. R. Crosley, G. P. Smith et al.. Influence of ambient conditions on the laser air spark [J]. Appl. Phys. B,1999, 68:121-130.
  • 9Mohamad Sabsabi, Paolo Cielo. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization [J]. Appl. Spectrosc. , 1995, 49(4):499-507.
  • 10Andrew V. Pakhomov, William Nichols, Jacek Borysow.Laser-induced breakdown spectroscopy for detection of lead in concrete [J]. Appl. Spectrosc. , 1996, 50(7) :880-884.

共引文献68

同被引文献30

  • 1王景龙,陈文武,蔡龙,马月仁,刘宇时,吕国盛,邵明君,金玉奇,桑凤亭.均匀液滴氧发生器液流破断的线性分析[J].强激光与粒子束,2006,18(6):935-938. 被引量:3
  • 2Singh R K, Holland O W, Narayan J. J. Appl. Phys., 1990, 68(1): 233.
  • 3Morris O, O'Connor A, Sokell E, et al. Plasma Sources Sci. Technol. , 2010, 19(2): 025007.
  • 4Guo L B, LiMC, Hu W, etal. Appl. Phys. Lett. , 2011, 98: 131501.
  • 5Matsuoka Y, Nakai Y, Fujioka S, et al. Appl. Phys. Lett. , 2010, 97: 111502.
  • 6WU Tao, RAO Zhiming, WANG Shifang. Journal of Physics: Conference Series, 2011, 276: 012031.
  • 7Bajt S, Alameda J B, Barbee T W, et al. Opt. Eng. , 2002, 41(8) : 1797.
  • 8Wu Tao, Wang Xinbing. Chin. Phys. Lett. , 2011, 28(5): 055201.
  • 9Campos D, Harilal S S, Hassanein A, et al. Appl. Phys. Let. , 2010, 96: 151501.
  • 10Yamaura M, Uchida S, Sunahara A, et al. Appl. Phys. Lett. , 2005, 86: 181107.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部