期刊文献+

残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响 被引量:1

Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite
下载PDF
导出
摘要 根据黄筑平等人提出的基于"三个构形"的表/界面能理论,研究了热弹性纳米复合材料的有效性质,重点讨论了残余界面应力对纳米尺度夹杂填充的热弹性复合材料有效热膨胀系数的影响.首先,给出了由第一类Piola-Kirchhoff界面应力表示的热弹性界面本构关系和Lagrange描述下的Young-Laplace方程;其次,采用Hashin复合球作为代表性体积单元,推导了在参考构形下复合球内部由残余界面应力诱导的残余弹性场,并进一步计算了从参考构形到当前构形的变形场;最后,基于以上计算得到了热弹性复合材料有效体积模量和有效热膨胀系数的解析表达式.研究表明,残余表/界面应力对复合材料的热膨胀系数有重要影响. The "three configurations" based surface/interface energy theory proposed by Huang et al was used to study the effective properties of thermal elastic nanocomposites. Particular emphasis was placed on the discussions of the influence of the residual interface stress on the thermal expansion coefficient of the said composites. First, the thermo-elastic interface constitutive relations expressed in terms of the first kind Piola-Kirchhoff interface stress and the Lagrangian description of the generalized Young-Laplace equation were presented. Second, the Hashin' s composite sphere assemblage (CSA) was taken as the representative volume element ( RVE), and the elastic deformations from the stress-free configuration to the reference configuration and from the reference configuration to the current configuration were calculated. Based on the above calculations, an analytical expression of the effective thermal expansion coefficient of thermo-elastic composite was derived. It is shown that the "residual" interface stress has a significant effect on the thermal expansion properties of the thermo-elastic nanocomposites.
出处 《应用数学和力学》 CSCD 北大核心 2011年第11期1283-1293,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10602002 10932001) 973资助项目(2010CB731503)
关键词 纳米复合材料 热弹性 有效热膨胀系数 残余界面应力 尺度效应 nanocomposites effective thermal expansion residual interface stress size-dependent
  • 相关文献

参考文献30

  • 1Mura T. Micromechanics of Defects in Solids[ M]. Dordrecht: Martinus Nijhoff, 1987.
  • 2Nemat-Nasser S, Hori M. Micromechanics. Overall Properties of Heterogeneous Materials [M]. Amsterdam: Elsevier, 1993.
  • 3Milton G W. The Theory of Composites[M]. Cambridge: Cambridge University Press, 2002.
  • 4Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties [M]. New York: Springer, 2002.
  • 5Buryachenko V A. Multiparticle effective field and related methods in micromechanics of composite materials [ J ]. Appl Mech Review, 2001, 54 ( 1 ) : 1-47.
  • 6胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393. 被引量:58
  • 7Levin V M. Thermal expansion coefficients of heterogeneous materials[J]. Mekhanika Tverdogo Tela, 1957,2( 1 ) :88-94.
  • 8Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures[J]. Surface Sci Rep, 1997, 29(5/5) : 193-263.
  • 9Steigmann D J, Ogden R W. Elastic surface-substrate interactions [ J]. Pro R Soc Lond A, 1999, 455(1982) : 437-474.
  • 10Haiss W. Surface stress of clean and adsorbate-covered solids[J]. Rep Prog Phys, 2001, 64 (5) :591-648.

二级参考文献4

共引文献57

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部