期刊文献+

矢量图像分割的快速C-V模型 被引量:1

A Fast C-V Model for Vector-valued Image Segmentation
下载PDF
导出
摘要 为了实现对矢量图像快速有效的分割,在分析矢量图像颜色、空间信息和水平集函数特性的基础上,对主动轮廓分割模型进行了改进,提出一种免重新初始化的矢量图像分割模型.在C-V(Chan-Vese)模型中引入了非线性热方程的符号距离函数的约束项,通过对非线性热方程传导率的均衡化使水平集函数始终保持符号距离函数的特性,完全取消比较耗时的重新初始化过程;改进了曲线二维梯度和散度算子传统离散化方式,使梯度和散度算子保持空间旋转不变性.实验结果表明,改进模型快速有效,对噪声和弱边缘有很好的鲁棒性. To achieve fast and effective vector-valued image segmentation, an improved active contour model without re-initialization for object segmentation is proposed on the basis of analysis on the image colors, spatial information and characteristics of the level set function. Nonlinear heat equation with balanced diffusion rate is added to the C-V model to maintain the signed distance function property. Therefore the costly re-initialization procedure is completely eliminated. The proposed method employs the two-dimensional spatial rotation-invariance gradient and divergence operator instead of the traditional discretization approach. Experimental results show that the proposed method is fast, efficient and robust with respect to noise and weak object boundaries.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第11期1869-1874,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60775036) 辽宁省教育厅资助项目(L2010194,2010076)
关键词 水平集 C—V模型 矢量图像 图像分割 半点离散化 level set C-V model vector-valued images image segmentation half-point discretization
  • 相关文献

参考文献12

  • 1Schoenemann T, Cremers D. A combinatorial solution for model-based image segmentation and real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7) : 1153-1164.
  • 2Sclaroff S, Liu L F. Deformable shape detection and description via model-based region grouping[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2001, 23(5): 475-489.
  • 3Kurugollu F, Sankur B, Harmanci A E. Color image segmentation using histogram multithresholding and fusion[J]. Image and Vision Computing, 2001, 19(13): 915-928.
  • 4Pham T D. Image segmentation using probabilistic fuzzy clustering [C]//Proceedings of InternationalConference on Image processing. Los Alamitos: IEEE Computer Society Press, 2001, 1: 722-725.
  • 5Emre C M, Kingravi H A, Iyatomi H, et al. Fast and accurate border detection in dermoscopy images usingstatistical region merging [J]//Progress in Biomedical Optics and Imaging, 2007, 8(3):65123V. 1-65123V. 10.
  • 6Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4) : 321-331.
  • 7孔丁科,汪国昭.基于区域相似性的活动轮廓SAR图像分割[J].计算机辅助设计与图形学学报,2010,22(9):1554-1560. 被引量:10
  • 8何宁,张朋.基于边缘和区域信息相结合的变分水平集图像分割方法[J].电子学报,2009,37(10):2215-2219. 被引量:24
  • 9Chan T F, Vese L A. Active contour model without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 10Aubert G, Kornprobst P. Mathematical problems in Image processing: partial differential equations and the calculus of variations [M]. New York: Springer, 2006.

二级参考文献24

  • 1S Osher, J A Sethian.Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988,79( 1 ) : 12 - 49.
  • 2S Esodoglu, P Smereka. A variational formulation for a level set representation of multiphase flow and area preserving curvature flow[J]. Commun. Math. Sci, 2008,6(1) : 125 - 148.
  • 3T Chan, L Vese. Active contours without edges[ J]. IEEE Image Proc,2001,10(2) :266 - 277.
  • 4Li C,Xu C, Gui C,M D Fox. Level set evolution without reinitialization: A new variational formulation[ A]. IEEE International Conference on Computer Vision and Pattern Recognition, Vol. 1[ C]. San Diego: IEEE Computer Society Press,2005.430 - 436.
  • 5V Caselles, R Kimmel, G Sapiro. Geodesic active contours[ J]. International Journal of Computer Vision, 1997, 22 ( 1 ) : 61 - 79.
  • 6Zhao HK, T Chan, B Merriman, S Osher. A variational level-set approach to multiphase motion [ J ]. Journal of Computational Physics, 1996,127:179 - 195.
  • 7D Mumford, J Shah. Optimal approximation by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathemalics, 1989,42 (5) : 577 - 685.
  • 8R Malladi,J A Sethian,B C Vemuri. Shape modeling with front propagation: A level set approach[ J]. IEEE Trans on PMAI, 1995,17(2) : 158 - 175.
  • 9Han X, Xu CY, J L Prince. A topology preserving level set method for geomelric deformable models [ J ]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6) :755 - 768.
  • 10J Gomes, O Fangeras. Reconciling distance functions and levelsets [J]. Visiual Communic and Image Representation, 2000,1(11) :209 - 223.

共引文献31

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部