期刊文献+

基于局部边缘特征的快速目标检测 被引量:12

Fast Object Detection Using Edge Fragment-Based Features
下载PDF
导出
摘要 为了实现复杂环境下形状、尺度变化较大的目标检测,提出一种在复杂背景图片中快速目标检测的算法.该算法采用新的局部边缘匹配特征,通过积分图像技术实现快速计算;通过机器学习算法自动提取样本的局部边缘特征来构建目标模板,且不需要任何手工分割和人工筛选的过程.在UIUC通用图像测试库上的实验结果表明,文中算法可在平移、尺度变化、遮拦和光照变化等条件下快速检测出目标,其精确性与已有算法相当,却大幅提高了实时性. We present a learning model for object detection in images with complex background. Novel local edge feature with chamfer distance as shape comparison measure are used to form a dictionary of templates. The features can be calculated very quickly using the Integral Image technique. Bagging-Adaboost algorithm is applied to select a discriminative edge features set and combine them to form an object detector. Floating search post optimization procedure is included to remove base classifiers causing higher error rates. The resulting classifier consists of fewer base classifiers yet achieves better generalization performance. Experimental results on UCUI image test sets show that our system can extremely quickly detect objects in varying conditions (translation, scaling, occlusion and illumination) with high detection rates. The results are very competitive with some other published object detection schemes. The speed of detection is much faster than that of existing schemes.
作者 唐旭晟 陈丹
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第11期1902-1907,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 边缘特征 目标检测 ADABOOST算法 计算机视觉 edge feature object detection Adaboost algorithm computer vision
  • 相关文献

参考文献20

  • 1Borgefors G. Hierarchical chamfer matching: a parametric edge matching algorithm [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 1988, 10(6): 849-865.
  • 2Gavrila D M. Pedestrian detection from a moving vehicle [C] //Proceedings of the 6th European Conference onComputer Vision Part II. London: Springer, 2000:37-49.
  • 3Gavrila D M. A Bayesian, exemplar-based approach to hierarchical shape matching [J]. 1EEE Transactions onPattern Analysis and Machine Intelligence, 2007, 29 (8): 1408-1421.
  • 4Felzenszwalb P F. Learning models for object recognition [C]//Proceedings of the IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2001, 1: 1056-1062.
  • 5Seemann E, Leibe B, Mikolajczyk K, et al. An evaluation of local shape-based features for pedestrian detection [OL].[2011-03-08]. http://www, mmp. rwth-aachen, de/publications/ pdf/seemann-edgebasedeval-bmveOS, pdf.
  • 6Shotton J, Blake A, Cipolla R. Contour-based learning for object detection [C]//Proceedings of the lOth IEEEInternational Con~erence on Computer Vision. Washington D C: IEEE Computer Society Press, 2005, 1:503-510.
  • 7Opelt A, Pinz A, Zisserman A. A boundary-fragment-model for object detection [C]//Proceedings of the 9th European Conference on Computer Vision. London: Springer, 2006: 575-588.
  • 8崔潇潇,王贵锦,林行刚.基于Adaboost权值更新以及K-L距离的特征选择算法[J].自动化学报,2009,35(5):462-468. 被引量:6
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C] //Proceedings of IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2001, 1:511-518.
  • 10Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6).. 679-698.

二级参考文献40

  • 1韦海萍,赵保军,唐林波,何佩琨.Canny算法的改进及其硬件的实现[J].光学技术,2006,32(2):263-266. 被引量:30
  • 2林玉池,崔彦平,黄银国.复杂背景下边缘提取与目标识别方法研究[J].光学精密工程,2006,14(3):509-514. 被引量:88
  • 3张震,马驷良,张忠波,刘辉,宫跃欣,孙秋成.一种改进的基于Canny算子的图像边缘提取算法[J].吉林大学学报(理学版),2007,45(2):244-248. 被引量:53
  • 4王振华,窦丽华,陈杰.一种尺度自适应调整的高斯滤波器设计方法[J].光学技术,2007,33(3):395-397. 被引量:31
  • 5Leibe B,Schiele B.Anailing appearance and contour based methods for object categorization.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Madison,USA:IEEE,2003.409-415
  • 6Shotton J,Blake A,Cipolla R.Contour-based learning for object detection.In:Proceedings of the 10th IEEE International Conference on Computer Vision.Beijing,China:IEEE,2005.503-510
  • 7Opelt A,Pinz A,Zisserman A.A boundary-fragment-model for object detection.In:Proceedings of the 9th European Conference on Computer Vision.Graz,Austria:Springer,2006.575-588
  • 8Friedman J,Hastie T,Tib8hirani R.Additive logistic regression:a statistical view of boosting.Annals of Statistics,2000,28(2):337-407
  • 9Freund Y.Schapire R E.Experiments with a new boosting algorithm.In:Proceedings of the 13th International Conference on Machine Learning.San Francisco,USA:KFUPM ePrints.1996.148-156
  • 10Breiman L.Prediction games and arcing Mgorithma.Neural Computation,1999,11(7):1493-1517

共引文献127

同被引文献164

引证文献12

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部