期刊文献+

离子液体捕集CO_2 被引量:9

Capture of CO_2 by Ionic Liquids
原文传递
导出
摘要 CO2是导致温室效应的最主要成分,因此碳捕集技术的研究受到学术界和产业界的高度重视。离子液体具有不挥发、不燃烧、热稳定性好、溶解能力强、结构和性质可调节并可循环使用等特性,在CO2的吸收/分离领域展现了广阔的应用前景。本文系统地综述了近年来常规离子液体、功能化离子液体、支撑离子液体膜、聚合离子液体以及离子液体与分子溶剂的混合物在捕集CO2方面的研究进展;讨论了离子液体的阳离子结构、阴离子类型、烷基链长度、阴/阳离子的氟化程度和功能化、离子液体的负载作用和聚合效应以及体系的温度和压力对CO2选择性捕集性能的影响;分析了可能的捕集机理以及各种捕集方法的优点和缺点;提出了目前需要进一步研究的若干重要问题,并对其发展前景进行了展望。 Since CO2 is one of the most important greenhouse gases,the research and development in the carbon capture have long been the focus of many academic and industrial studies.Ionic liquids have a number of unique properties,such as no-volatility,non-flammation,recyclability,high thermal stability,strong solubility capacity,and the tunability of molecular structures and physicochemical properties.Thus they have promising application in absorption and separation of CO2.In this paper,the recent progress in the CO2 capture by using regular ionic liquids,task-specific ionic liquids,supported ionic-liquids membranes,polymerized ionic liquids and the mixtures of ionic liquids with some molecular solvents have been reviewed.The effects of cationic structure,anionic property,alkyl chain length,functionalization of both the cations and the anions,characteristics of the supported membranes,the polymerized degree of ionic liquids,temperature and pressure of the systems on the selective capture of CO2 are discussed in detail.The possible mechanisms for the capture and selective separation of CO2 are also demonstrated.Furthermore,the advantages and disadvantages have been analyzed for the above mentioned ionic liquids systems in the capture of CO2.The future development in this area is prospected,and several important issues are suggested for the further work.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2011年第11期2269-2275,共7页 Progress in Chemistry
基金 国家自然科学基金项目(No.20873036) 河南省杰出人才计划项目(No.084200510015)资助
关键词 离子液体 CO2 捕集 吸收 分离 ionic liquids CO2 capture absorption separation
  • 相关文献

参考文献60

  • 1Srivastava M L, Shukla N K, Sungh S K, Jaiswal M R. J. Membr. Sci. , 1996, 117:39-44.
  • 2Moreno C, Valente M. J. Membr. Sci. , 1999, 155:155-162.
  • 3Jamal A, Meisen A, Lim C J. Chem. Eng. Sci., 2006, 61: 6590-6603.
  • 4Oyenekan B A, Rochelle G T. Ind. Eng. Chem. Res. , 2006, 45 : 2457-2466.
  • 5Henni A, Li J, Tontiwachwuthikul P. Ind. Eng. Chem. Res., 2008, 47:2213-2220.
  • 6Rogers R D. Nature, 2007, 447:917-918.
  • 7Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Ind. Eng. Chem. Res. ,. 2009, 48: 2739-2751.
  • 8Hasib-ur-Rahman M, Siaj M, Larachi F. Chemical Engineering and Processing, 2010, 49 : 313-322.
  • 9Karadas F, Atilhan M, Aparicio S. Energy Fuels, 2010, 24: 5817-5828.
  • 10Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399 : 28-29.

同被引文献151

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部