期刊文献+

Banach空间中分数阶微分方程初值问题解的性质 被引量:1

The properties of solutions for initial value problems of fractional differential equations in Banach space
下载PDF
导出
摘要 讨论了Banach空间中的分数阶微分方程解的性质,利用Schauder不动点定理及Gronwall不等式证明了初值问题解的存在唯一性.当右端函数f(t,u)关于u线性增长时,得到了解的整体存在性.进一步讨论了分数阶方程的解对初值和阶数的连续相依性. This paper mainly investigate the properties of solutions for fractional differential equations in Banach space.By Schauder fixed-point theorem and Gronwall inequality,the existence and uniqueness of solutions on initial value problems are proved.When the function on right side of equality is growing linearly,the global existing interval of the solutions is in [0,+∞).Furthermore,we study the dependence of solutions for fractional differential equations on the continuity of initial values and orders.
出处 《徐州师范大学学报(自然科学版)》 CAS 2011年第3期26-30,共5页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771212)
关键词 分数阶微分方程 CAPUTO分数阶导数 SCHAUDER不动点定理 fractional differential equation Caputo fractional derivative Schauder fixed-point theorem
  • 相关文献

参考文献6

  • 1Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J]. J Math Anal Appl, 1996,204(2) : 609.
  • 2EI-Sayed A M A. Linear differential equations of fractional orders [J]. Appl Math : Comput, 1993,55 (1) : 1.
  • 3EL-Raheem Z F A. Modification of the applicaion of a contraction mapping method on a class of fractional differential e- quation[J]. Appl Math ~ Comput, 2003,137 (2/3) : 371.
  • 4Diethelm K. The analysis of fractional differential equations:an application-oriented exposition using differential operators of Caputo type[M]. Berlin: Springer Verlag,2010.
  • 5尤秉礼.常微分方程补充教程[M].北京:高等教育出版社,1981.
  • 6BirkhoffG,RotaGC.Ordinarydifferentialequations[M].4thed.NewYork:JoanWiley,1978.

共引文献15

同被引文献15

  • 1El-Sayed A M A. Nonlinear functional diferential equations of arbitrary orders[J].Nonlinear Analysis-Theory Methods and Applications,1998,(02):181.doi:10.1016/S0362-546X(97)00525-7.
  • 2Podlubny I. Fractional diferential equations(mathematics in science and engineering)[M].New York:Academic Press,Inc,1999.
  • 3Sten O E. The fourier transform of a voltammetric peak and its use in resolution enhancement[J].J Electroanal Chem Interracial Electrochem,1990,(02):371.doi:10.1016/0022-0728(90)87259-M.
  • 4钟成奎;范先令;陈文源.非线性泛函分析及其应用[M]兰州:兰州大学出版社,1998.
  • 5Diethelm K,Ford N J. Analysis of fractional diferential equations[J].Journal of Mathematical Analysis and Applications,2002,(02):229.doi:10.1006/jmaa.2000.7194.
  • 6El-Sayed A M A. On the fractional diferential equations[J].Applied Mathematics and Computation,1992,(2/3):205.doi:10.1016/0096-3003(92)90024-U.
  • 7Miller K S. Fractional diferential equations[J].J Fract Calc,1993,(01):49.
  • 8Miller K S,Ross B. An introduction to the fractional calculus and fractional diferential equations[M].New York:John Wiley &-Sons,1993.
  • 9Bai Zhaibing,Lv Haisher. Positive solutions for boundary value problem of nonlinear fractional diferential equation[J].Journal of Mathematical Analysis and Applications,2005,(02):495.doi:10.1016/j.jmaa.2005.02.052.
  • 10Delbosco D,Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,1996,(02):609.doi:10.1006/jmaa.1996.0456.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部