摘要
研究了两类特殊三阶矩阵环的左Morphic性质.具体地,设R是环,令L(R)=a11 0 0a21 a22 a230 0 a33|a11,a21,a22,a23,a33∈R和O(R)=a 0 0a21 a a230 0a|a,a21,a23∈R.证得:(1)L(R)和O(R)都不是左Morphic的;(2)当R是唯一Morphic环且R∝R是左Morphic的,O(R)中主对角线为非零元的元素是左Morphic元.
This paper studies the left morphic property of two special classes of 3×3 matrices.Exactly,let R be a ring,set L(R)=a1100 a21a22a23 00a33|a11,a21,a22,a23,a33∈R and O(R)=a00 a21aa23 00a|a,a21,a23∈R.It’s shown that(1) Neither L(R) nor O(R) is left morphic;(2) Let R be a uniquely morphic ring and R∝R be a left morphic ring.Then the elements whose principal diagonal are nonzero in R are left morphic in O(R).
出处
《湖州师范学院学报》
2011年第2期12-16,共5页
Journal of Huzhou University
基金
Supported by new talents program of Zhejiang province(2010R421051)