期刊文献+

Bloch空间上的广义Cesàro算子的本性模(英文)

Extended Cesàro Operators on the Bloch Space
下载PDF
导出
摘要 H(B)是单位球B上的全纯函数的全体,对g∈H(B),讨论了Bloch空间上的广义Cesàro算子Tg的本性模估计.利用上极限,给出了‖Tg‖e,B→B的表示.此处‖Tg‖e,B→B表示Bloch空间上的广义Cesàro算子的本性模. The title of this paper is the estimate of the essential norm of the extended Cesàro operators Tg on the Bloch spaces,where g is a given holomorphic function on the unit ball B.The essential norm of Tg as an operator on the Bloch spaces is denoted by ‖Tg ‖e,B→B.We express ‖Tg ‖e,B→B in terms of an asymptotic upper bound of a quantity.
作者 孟一梅
出处 《湖州师范学院学报》 2011年第2期17-20,共4页 Journal of Huzhou University
基金 supported by the National Natural Science Foundation of China(10771064) Natural Science Foundation of Zhejiang Province(Y7080197,Y6090036,Y6100219)
关键词 BLOCH空间 广义Cesàro算子 本性模 the Bloeh space extended Cesaro operators essential norm
  • 相关文献

参考文献1

二级参考文献15

  • 1Aleman A, Siskskis A O. An integral operator on Hp. Complex Variables, 1995, 28:149-158.
  • 2Aleman A, Siskakis A G. Integration operators on Bergman spaces. Indiana University Math J, 1997, 46:337-356.
  • 3Boe B, Nicolau A. Interplation by functions in the Bloch space, preprint (submitted to Trans, Amer Math Soc).
  • 4Dunford N, Schwartz J T. Linear Operators I. New York: Interscience Publishers, John Wiley and Sons,1958.
  • 5Hardy G H. Notes on some points in the integral calculus LXVI. Messenger of Math, 1929, 58:50-52.
  • 6Miao M. The Cesaro overator is bounded on H^p for 0 < p < 1. Proc Amer Math Soc, 1992, 116:1077-1079.
  • 7Pommerenke Ch. Schlichte funktionen und analytische funktionen yon beschrankter mittlerer oszilation. Comment Math Helv. 1977, 52:591-602.
  • 8Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980.
  • 9Shi J H, Ren G P. Boundedness of the Ceshro operator on mixed norm spaces. Proc Amer Math Soc,1998, 126:3553-3560.
  • 10Siskakis A G. Composition semigroups and the Cesàro operator on H^p. J London Math Soc, 1987, 36(2):153-164.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部