期刊文献+

一类广义混合变分不等式组解的强收敛定理

Strong Convergence Theorem for a System of Generalized Mixed Variational Inequality
下载PDF
导出
摘要 研究了Banach空间中一类广义混合变分不等式组问题,引进了一种新的迭代算法,研究了由迭代算法生成的序列的收敛性,并得到了这类变分不等式组解的强收敛定理,从而推广和改进了相关文献的一些工作. This paper,which introduces a new iteration algorithm and researches into the convergence of iterative sequence generated by the algorithm,is devoted to studying a new system of generalized mixed variational inequality in Banach spaces,from which we get the strong convergence theorems of the solution for this system of generalized mixed variational inequality.The results obtained in this paper extend corresponding works of others
作者 史杰 何中全
出处 《湖州师范学院学报》 2011年第2期30-35,共6页 Journal of Huzhou University
基金 四川省教育厅2009年度重点课题基金资助项目(07ZA123)
关键词 变分不等式组 迭代算法 投影算子 强收敛 system of variational inequality iteration algorithm projection operator strong convergence
  • 相关文献

参考文献1

二级参考文献12

  • 1CENG Lu-chuan, YAO Jen-chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[ J]. J Comput Appl Math, 2008,214( 1 ) : 185-201.
  • 2Browder F E. Existence and approximation of solutions of nonlinear variational inequalities[J]. Proc Natl Acacl Sci USA, 1966,56(4) : 1080-1086.
  • 3Takahashi W, Zembayashi K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[ J]. Nonlinear Anal ,2009,70( 1 ) :45-57.
  • 4Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[ J]. J Math Anal Appl,2007,331( 1 ) :506-515.
  • 5Qin X L, Shang M, Su Y.A general iterative method for equilibrium problem and fixed point problems in Hilbert spaces[ Jl. Nonlinear Anal, 2008,69( 11 ) : 389%3909.
  • 6Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems [ M ]. Dordrecht: Kluwer, 1990.
  • 7AlDer Y I. Metric and generalized projection operators in Banach spaces: properties and applications [A]. In: Kartosator A G, Ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type [C]. New York: Marcel Dekker, 1996,15-50.
  • 8Kamimura S,Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space[ J]. SIAM J Optim, 2002,13 (3) : 938-945.
  • 9Matsushita S, Takahashi W. Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces[J]. Fixed Point Theory Appl,2004,2004(1) :37-47.
  • 10Nilsrakoo W, Saejung S. Strong convergence to common fixed points of countable relatively quasi- nonexpansive mappings [ J ]. Fixed Point Theory Appl, 2008,2008: Article ID 312454, doi: 10.1155/ 2008/312454.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部