期刊文献+

冲击噪声背景下归一化广义旁瓣相消器 被引量:2

Normalized-generalized Sidelobe Canceller in Impulsive Noise
下载PDF
导出
摘要 针对冲击噪声背景下常规波束形成算法性能下降的问题,该文提出一种归一化广义旁瓣相消器(N-GSC)算法,该算法适用于任意未知统计特性的代数拖尾冲击噪声环境。算法通过对输入信号进行无穷范数归一化,使信号的二阶统计量存在且有界,再进行维纳滤波,提高了波束形成在冲击噪声背景下的性能。进行了4种冲击噪声背景下的仿真实验。仿真结果表明,与传统的GSC算法和基于分数低阶矩的GSC算法相比,N-GSC算法计算简单,无需噪声特征指数的先验信息或估计,适用于任意分布的冲击噪声环境,具有更强的干扰抑制能力。 To solve the performance degradation of a beamformer in impulsive noises,a new normalized-generalized sidelobe canceller(N-GSC)algorithm is presented for the heavy-tailed impulsive noises of arbitrary unknown statistics.The second-order statistical entity of input signal is made exist and finite by infinity-norm normalizing the input signal,and the input signal is filtered by wiener filter to improve the performance of the beamformer amid heavy-tailed impulsive noise of unknown statistics.The simulation results of four impulsive noises show that,compared with the GSC and the fractional lower order moments based GSC algorithm,the N-GSC algorithm does not need any prior information and estimation of the impulsive noise characteristic exponents,is easy for calculation and suitable for wider heavy-tailed impulsive noises,and can offer better interference-rejection.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第5期677-680,共4页 Journal of Nanjing University of Science and Technology
基金 航空科学基金(2009ZC52038) 南京理工大学自主科研专项计划(2010ZYTS082)
关键词 阵列信号处理 广义旁瓣相消器 分数低阶矩 冲击噪声 array signal processing generalized sidelobe cancellers fractional lower order moments impulsive noises
  • 相关文献

参考文献9

二级参考文献66

  • 1赵军,是湘全,谷亚林,杨静宇.接收阵列天线的时-空二维谱估计[J].南京理工大学学报,2004,28(5):511-515. 被引量:2
  • 2何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法[J].电子学报,2006,34(3):464-468. 被引量:14
  • 3Krim H, Viberg M. Two decades of array signal processing research[J]. IEEE Signal Process Magazine, 1996, 13(4) : 67-94.
  • 4Sehmidt R O. Multiple emitter location and signal parameter eslimation[ J]. IEEE Trans on Antennas Propagation, 1986, 34(3): 276-280.
  • 5Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques[J ]. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37 (7) : 984 -995.
  • 6Field E C, Lewinstein M. Amplitude-probability distribution model for VLF/ELF atmospheric noise[ J ]. IEEE Trans on Communications, 1978, 26(1 ): 83-87.
  • 7Shinde M P, Gupta S N. Signal detection in the presence of atmospheric noise in tropic[ J]. IEEE Trans on Communications, 1974, 22 ( 8 ) : 1055 - 1063.
  • 8Bouvet M, Schwartz S C. Comparison of adaptive and robust receivers for signal detection in ambient underwater noise [ J ]. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37(5) : 621 -626.
  • 9Shao M, Nikias C I,. Signal proeessing with fractional lower order moments : Stable processes and their applications [ J ]. Proceedings of the IEEE , 1993, 81 (7) : 986 - 1010.
  • 10Tsakalides P, Nikias C I,. Maximum likelihood localization of sources in noise modeled as a stable process [J]. IEEE Trans on Signal Processing, 1995, 43 (11) : 2700 -2713.

共引文献25

同被引文献33

  • 1何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法[J].电子学报,2006,34(3):464-468. 被引量:14
  • 2Veen B D V,Bucklev K M.Beamforming:A versatileapproach to spatial filtering[J].IEEE ASSP Magazine,1988,5(2):4-24.
  • 3Capon J.High-resolution frequency-wave number spectrumanalysis[J].Proceedings of IEEE,1969,57(8):1408-1418.
  • 4Widrow B,Mantey P E,Griffiths L J.Adaptive antennasystems[J].Proceedings of IEEE,1967,55(12):2143-2159.
  • 5Griffiths L J,Jim C W.An alternative approach to line-arly constrained adaptive beamforming[J].IEEETransactions on Antennas and Propagation,1982,30(1):27-34.
  • 6Candès E J,Romberg J,Tao T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incompletefrequency information[J].IEEE Transactions on Informa-tion Theory,2006,52(2):489-509.
  • 7Candès E J,Romberg J,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
  • 8Candès E J.Compressive sampling[A].Proceedings ofICM2006[C].Madrid,Spain:Association InternationalCongress of Mathematicians,2006:1433-1452.
  • 9Donoho D L.Compressed sensing[J].IEEE Transactionson Information Theory,2006,52(4):1289-1306.
  • 10Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部