期刊文献+

基于SVM的导弹自由飞行阶段可靠性评估 被引量:2

Reliability Evaluation for Missile Free Flight Based on SVM
下载PDF
导出
摘要 为更好地评估巡航导弹自由飞行阶段的可靠性,对小样本回归问题进行研究。首先对实验数据进行特征选择与提取得到学习样本,在此基础上利用支持向量机(support vector machine,SVM)方法进行可靠性评估研究,然后通过仿真实验对比神经网络与支持向量机2种方法的评估效果。结果证明:SVM的训练学习效率更高,同时能够保证较好的泛化性能,提高自由飞行阶段可靠性的评估效果。 In order to improve the performance of the missile reliability estimation in free flight phase, the research of the regression problem with small scale of samples is carried out. Firstly, the learning samples are obtained after feature selection and abstraction, based on which the SVM is used to estimate the reliability of the missiles. Then the estimation performance of the neural network and SVM is compared by simulation. The results indicate that the efficiency of SVM was higher than the neural network, and SVM also has good generalization ability and can improve the performance of the reliability estimation.
出处 《兵工自动化》 2011年第11期24-28,共5页 Ordnance Industry Automation
关键词 导弹 可靠性 支持向量机 神经网络 missile reliability SVM neural network
  • 相关文献

参考文献7

  • 1耿飞,刘雨时.基于马尔科夫过程的导弹贮存可靠性模型的研究[J].山东大学学报(工学版),2010,40(1):33-36. 被引量:6
  • 2李根成,姜同敏.导弹战斗部任务可靠性评估方法分析[J].火炸药学报,2006,29(4):6-9. 被引量:11
  • 3Donald L. Hoffman. Using Neural Networks for Estimating Cruise Missile Reliability[D]. Ohio: Air Force Institute of Technology, 2003.
  • 4Vapnik V. The Nature of Statistical Learning Theory[M]. New Yor k: Springer, 1995.
  • 5Vapnik V. Statistical Learning Theory[M]. New York: John Wiley and Sons, 1998.
  • 6Smola Alex J. and Sch/51kopf B. A Tutorial on Support Vector Regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
  • 7Scholkopf B, Simard P, Smola A J. Prior Knowledge in Support Vector Kernels[C]. Advanced in Neural Information Processing Systems. MA: MIT Press, 1998: 64O-646.

二级参考文献7

共引文献15

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部