期刊文献+

基于光谱归一化的马尾松LAI遥感估算研究 被引量:4

Masson's Pine LAI Estimation Based on Spectral Normalization Using Remote Sensing Data
下载PDF
导出
摘要 通过对比不同传感器间光谱响应函数的差异,研究基于光谱响应函数的不同传感器相似波段的归一化方法,探讨归一化后植被指数在马尾松叶面积指数(LAI)估算中的应用。以某一传感器为基准,根据波段总辐射率比值关系将其他卫星传感器归一化为基准传感器,然后计算其植被指数,建立LAI反演模型。为验证方法可行性,选取永安地区2008年3月获取的BJ-1CCD、IRS-P6LISS3和MODIS数据作为研究对象,根据三者的光谱响应函数差异,将BJ-1CCD和IRS-P6的LISS3的红光和近红外波段归一化为MODIS的相应波段,并分别计算归一化前后的NDVI值。结果表明归一化后不同传感器的植被指数关系与理想的关系y=x更加接近。利用归一化后的IRS-P6影像的NDVI反演马尾松LAI,并将其应用于MODIS和BJ-1传感器,得到归一化后不同传感器的植被指数值基本相等,表明归一化以后的植被指数应用于LAI的估算具有一定的普适性,能适用于多种传感器。 In this paper,the spectral response functions among the different sensors were compared,and the normalization method for similar bands of different sensors was studied.The application of normalized VI on Masson's pine LAI estimation was studied.One specific sensor was set as a reference and other sensors were normalized to it according to the integral ratio relationship,then the vegetation index could be calculated and LAI inversion model was established.To validate its feasibility,Yongan city in Fujian province was taken as the study area,and the data of red and near-infrared from BJ-1 CCD sensor and IRS-P6 LISS3 sensor were normalized consistently to corresponding bands of MODIS sensor.And then the NDVI values before and after normalization were calculated.The results showed that after normalization,the relationship of vegetation indices among the different sensors were closer to the ideal relationship y=x.Moreover,NDVI calculated from normalized IRS P6 data was used to estimate Masson's pine LAI,which was applied to MODIS and BJ-1 sensors.As the LAI among different sensors were nearly equal after normalization,the conclusion could be reached that the normalized VIs of different sensors could be generally applied to estimate LAI to a certain extent.
出处 《遥感信息》 CSCD 2011年第5期52-58,共7页 Remote Sensing Information
基金 福建省自然科学基金杰出青年资助项目(项目编号:2009J06024) 福建省教育厅A类科技项目(JA10041) 863计划子专题(项目编号:2009AA12Z1462)
关键词 叶面积指数(LAI) 光谱归一化 光谱响应函数 马尾松 leaf area index(LAI) spectral normalization spectral response function Masson's pine
  • 相关文献

参考文献17

  • 1Chen J M. Derivation and validation of Canada_wide coarse_resolution leaf area index maps using high_resolution satellite imagery and ground measurement[J]. Remote Sensing of Environment,2002(80):165--184.
  • 2Chen J M,Chen X Y,Ju W M. Distributed hydrological model for mapping evapotran spirationusing remote sensing inputs[J]. Journal of Hydrology,2005(305) :15--39.
  • 3张娜,于贵瑞,赵士洞,于振良.基于遥感和地面数据的景观尺度生态系统生产力的模拟[J].应用生态学报,2003,14(5):643-652. 被引量:43
  • 4Chen J M,Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment, 1996(55) .. 153.
  • 5Gemmell F,Varjo J, Strandstrom, et al. Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion[J]. Remote Sensing of Environment, 2002 (81):265.
  • 6Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J].Remote Sensing of Environment,2006(100) :281.
  • 7Choudhury B J, Ahmed N U, Idso S B,Regent R J,et al. Relations between evaporation coefficients and vegetation inde-xes studiedly model simulations[J]. Remote Sensing of Environment,1994(50) :1--17.
  • 8孙鹏森,刘世荣,刘京涛,李崇巍,林勇,江洪.利用不同分辨率卫星影像的NDVI数据估算叶面积指数(LAI)——以岷江上游为例[J].生态学报,2006,26(11):3826-3834. 被引量:35
  • 9Wu J L,Gu X F,Yu T,Meng Q Y,Chen L F,Li L,Gao H L,Wu S J. 2008 international workshop on earth observation and remote sensing applications [C]//Lincoln, Nebraska, USA: Institute of Electrical and Electronics Engineers (IEEE). 2008.
  • 10Xiao Z Q,Liang S L,Wang J D,Song J L,Wu X Y. A temporally integrated inversion method for estimating Leaf Area Index from MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009 (47) :2536--2545.

二级参考文献52

共引文献755

同被引文献52

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部