摘要
研究一类具有非线性发生率的SI传染病模型.应用微分方程定性理论,给出了该系统极限环的存在性、唯一性以及无病平衡点和地方病平衡点的全局渐近稳定性的充分条件.
An SI epidemic model with nonlinear incidence rate is investigated. By using the qualitative theory of ordinary differential equations, sufficient conditions are obtained for the existence and uniqueness of limit cycles and the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium to the proposed model.
出处
《大学数学》
2011年第5期71-75,共5页
College Mathematics
基金
军械工程学院科研基金资助(YJJXM0609
JCB0803)