期刊文献+

一类具有非线性发生率的SI传染病模型的定性分析 被引量:1

Qualitative Analysis of an SI Epidemic Model with Nonlinear Incidence Rate
下载PDF
导出
摘要 研究一类具有非线性发生率的SI传染病模型.应用微分方程定性理论,给出了该系统极限环的存在性、唯一性以及无病平衡点和地方病平衡点的全局渐近稳定性的充分条件. An SI epidemic model with nonlinear incidence rate is investigated. By using the qualitative theory of ordinary differential equations, sufficient conditions are obtained for the existence and uniqueness of limit cycles and the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium to the proposed model.
出处 《大学数学》 2011年第5期71-75,共5页 College Mathematics
基金 军械工程学院科研基金资助(YJJXM0609 JCB0803)
关键词 传染病模型 平衡点 极限环 全局稳定性 epidemic model equilibrium limit cycle global stability
  • 相关文献

参考文献7

  • 1Moghadas S M. Two core group models for sexual transmission of disease [J]. Ecological Modelling, 2002, 148 (1):15-26.
  • 2Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations [J].Math. Biosci. , 2000, 167(1): 65-86.
  • 3Ma Z N, Liu J P, Li J. Stability analysis for differential infectivity epidemic models [J]. Nonlinear Anal. : Real World Applications, 2003, 4(5): 841-856.
  • 4Yuan S L, Ma Z N, Jin Z. Persistence and periodic solution on a nonautonomous SIS model with delays [J].Aeta Mathematical Applicatae Sinica, English series, 2003, 19(1): 167-176.
  • 5Ruan S G, Wang W D. Dynamical behavior of an epidemic model with a nonlinear incidence rate [J]. DifferentialEquations, 2003, 188(1): 135-163.
  • 6陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 7Liu W M, Levin S A, Lwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models [J]. J. Math. Biol. , 1986, 23:187-204.

二级参考文献10

  • 1Moghadas S M. Two core group models for sexual transmission of disease[J]. Ecological Modelling, 2002 ,148 (1) : 15-26.
  • 2Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations [J]. Math Biosci, 2000 , 167(1): 65-86.
  • 3Ma Z, Liu J P, Li J. Stability analysis for differential infectivity epidemic models [J]. Nonlinear Analysis:Real World Applications, 2003 , 4(5): 841-856.
  • 4Moreira H N, Wang Y. Global stability in an S→I→R→Imodel [J]. SIAM Rev, 1997, 39(3): 496 - 502.
  • 5Zhang X, Chen L S. The periodic solution of a class of epidemic models [J]. Computers and Mathematics with applications, 1999 , 38(3-4): 61-71.
  • 6Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
  • 7Moghadas S M, Gumel A B. Global stability of a two-stage epidemic model with generalized non-linear incidence [J]. Mathematics and computers in simulation, 2002 , 60(1-2): 107-118.
  • 8尚莉.易感性不同的病毒携带者流行病在开放系统的随机模型[J].兰州大学学报(自然科学版),2001,37(1):19-22. 被引量:3
  • 9陈军杰,张南松.具有常恢复率的艾滋病梯度传染模型[J].应用数学学报,2002,25(3):538-546. 被引量:13
  • 10San-ling,Zhi-enMa,ZhenJin.Persistence and Periodic Solution on a Nonautonomous SIS Model with Delays[J].Acta Mathematicae Applicatae Sinica,2003,19(1):167-176. 被引量:5

共引文献25

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部