摘要
根据支持向量机结构风险最小化原则和量子粒子群快速全局优化的特点,提出了干扰样式识别的QPSO-SVM算法。采用量子粒子群算法优化支持向量机参数,建立了干扰样式特征组分识别的模型,经过仿真试验,表明该算法具有识别率高,计算时间短的优点。
According to minimum structure risk of SVM(Support Vectors Machine) and the quickly globally optimizing ability of QPSO(Quantum behave Particle Swarm Optimization),a novel algorithm for jamming pattern recognition based on QPSO SVM was proposed.The parameters of SVM was opti-mized by using QPSO,then the jamming pattern recognition model was constructed.Simulation results show that the algorithm can recognize jamming pattern correctly at low JSR.
出处
《中国电子科学研究院学报》
2011年第5期490-493,共4页
Journal of China Academy of Electronics and Information Technology
关键词
干扰识别
量子粒子群
支持向量机
jamming recognition
Quantum-behave Particle Swarm Optimization
Support Vectors Machine