期刊文献+

加权关联规则的个性化科研素养挖掘研究

Application Study in Personalized Science Literacy Using Weight Association Rules Algorithm
下载PDF
导出
摘要 针对高校科研统计数据集,通过探索性的数据分析,提取出主要影响科研素养的影响因子,在对各影响因子的特征选择的基础上,进行特征值的离散化、数据规约和特征构造等方面的分析。考虑到科研素养的各影响因子中,不同影响因子有着不同的重要性的特点,在Apriori算法思想的基础上,对各影响因子设定权重值,并将加权关联规则算法,引入到个性化的科研素养的发现中,从而挖掘个性化的、有意义的关联信息。实验结果证明:该算法能够更真实地挖掘并发现高校科研素养中个性化的有趣信息和关联规则,挖掘结果可为科研素养的评价提供决策参考。 This paper, based on the statistical data sets for scientific research with exploratory data analysis, extracted the main factors of scientific literacy in various factors on the basis of feature selection, diseretization of the feature values, data structures, and characteristics such as statute perspectives. Taking into account the impact factor scientific literacy, the author found that different factors have different importance of features in the Apriori algorithm based on the i- deas of various factors setting the weights, and introducing weighted association rules to the personalized scientific literacy discoveries so as to tap the personalized, meaningful information and the association. The experimental results showed that the algorithm can dig and find more real, scientific research accomplishment in the personalized information and interesting association rules, and the mining results can be evaluated for scientific literacy to provide decision - making.
作者 徐儒
出处 《贵阳学院学报(自然科学版)》 2011年第3期18-22,共5页 Journal of Guiyang University:Natural Sciences
基金 长江师范学院校级课题<基于Ajax的高校教师业务档案管理平台研究>(项目编号:09jky005)
关键词 权重 关联规则 影响因子 科研素养 个性化 weight association rules impact factor scientific literacy personalization
  • 相关文献

参考文献4

二级参考文献19

  • 1Cios K J,Kurgan L A.Trends in data mining and knowledge discovery[C]//Pal N R.Knowledge Discovery in Advanced Information Systems, Springer, 2002 . 1-26.
  • 2Hand D J.Principles of data mining[M].[S.l.]:MIT Press,2001.
  • 3Liu Peng.A unified strategy of feature selection [C]//LNCS, 2006 ( 4093 ) : 457-464.
  • 4Chotirat A. Ratanamahatana and dimitrios gunopulos selective Bayesian classifier:feature selection for the Naive Bayesian classifier using decision trees[J].Applied Artificial Intelligence,2003, 17(5/6) :475-487.
  • 5Witten I H,Eibe F.数据挖掘:使用机器学习技术[M].2版.北京:机械工业出版社,2005.
  • 6Agrawal R,Tmielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc 1993 ACM?SIGMOD Int Conf Management of Data.Washington D C, 1993,5:207-216.
  • 7Han Jiawei,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2002.
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proceeding of the 20th International Conference on Very Large Databases, 1994,9: 487 -499.
  • 9Agrawal R,Srikant R.Fast algorithm for mining association ruleslC]// Proceedings of the International Conference on Very. Large Data Bases.Santiago, Chile, 1994 : 487-499.
  • 10[2]Cai C H, Ada W C Fu, Cheng C H, Kwong W W. Mining association rules with weighted items[A]. In Proc. Of the Int'l Database Engineering and Applications Symposium[C]. 1998.68-77.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部