期刊文献+

利用语义关系抽取生成生物医学文摘的算法 被引量:7

Automatic Summarization Algorithm for Biomedical Literature Based on Semantic Relation Extraction
下载PDF
导出
摘要 通过自动摘要技术对生物医学概念进行摘要抽取,能够提高研究人员查阅和分析相关资料的效率。利用生物医学语义关系抽取多文档摘要,旨在从语义层面比较全面地覆盖查询概念的多方面内容,帮助研究人员快速掌握查询概念的主要信息。从生物医学文本中挖掘出了概念的重要语义关系,并利用语义关系作为衡量句子重要性的特征,生成查询概念的摘要。分析了H1N1、风湿病、脑脊髓炎等5种疾病,生成的摘要基本覆盖了这几种疾病的致病原因、类型、防治策略等语义类型。实验结果表明,利用语义关系特征抽取摘要的方法不但能提高摘要的性能,而且增加了生物医学语义层面内容,使生成的摘要更符合研究人员的查询需要。 Automatic summarization can help biomedical researchers to get a general idea of the given concept and make the research more efficient. Using semantic relation to extract summaries can cover information in more aspects on semantic level. Researchers can get the knowledge more easily. This paper extracts the important semantic relation of concepts from biomedical literatures, and uses the semantic relation as the character of measuring sen- tence importance to generate the summary. It focuses on five diseases, such as H1N1, rheumatism and encephalo- myelitis. Summary extracted contains the causes, types and treatments of the given diseases. Experimental results show that this method can improve the summarizing performance. Compared with the general method, the summarization with semantic relations can integrate the content of multi-document on semantic level and meet the need of biomedical researchers.
出处 《计算机科学与探索》 CSCD 2011年第11期1027-1036,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.60673039 61070098 国家高技术研究发展计划(863)No.2006AA01Z151 高等学校博士学科点专项科研基金No.20090041110002 中央高校基本科研业务费专项资金No.DUT10JS09 辽宁省博士启动基金No.20091015~~
关键词 自动摘要 关系抽取 语义分析 automatic summarization relation extraction semantic analysis
  • 相关文献

参考文献22

  • 1Steinberger J, Jezek K. Text summarization: an old challenge and new approaches[J]. Foundations of Computational, Intelligence, 2009, 6: 127-149.
  • 2Luhn H E The automatic creation of literature abstracts[J] IBM Journal of Research Development, 1958, 2(2): 159- 165.
  • 3I Edmundson H E New methods in automatic extracting[J]. I Journal of the ACM, 1969, 16(2): 23-42.
  • 4Erkan G, Radev D R. LexRank: graph-based lexical centrality as salience in text summarization[J]. Journal ofArtificial Intelligence Research, 2004, 22(1): 457-479.
  • 5Yeufel S, Moens M. Sentence extraction as a classifica- tion task[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics and Conference ofthe European Chapter of the Association for Computational Linguistics (ACL/EACL), Madrid, Spain, 1997. Stroudsburg, PA, USA: Association for Computational Linguistics, 1997: 58-65.
  • 6Radev D, Allison T, Goldensohn S B, et al. MEAD-a platform for multidocument multilingual text summariza-tion[C]//Proceedings of the 4th International Conference on Language Resources and Evaluation, 2004. Lisbon, Portugal: European Language Resources Association, 2004 699-702.
  • 7Ling gene ings Xu, Jiang Jin, He Xin, et al. Automatically generating summaries from biomedical literature[C]//Proceedof Pacific Symposium on Biocomputing. HawaiiUSA: International Society for Computational Biology, 2006: 40-51.
  • 8Ling Xu, Jiang Jin, He Xin, et al. Generating semi-structured gene summaries from biomedical literature[J]. Information Processing and Management, 2007, 43(6): 1777-1791.
  • 9Reeve L H, Han H, Brooks A D. The use of domain-specific concepts in biomedical text summarization[J]. Information Processing & Management, 2007, 43 (6): 1765- 1776.
  • 10Yoo I, Hu Xiaohua, Song I. A coherent biomedical literature clustering and summarization approach through ontology-enriched graphical representations[C]//Proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, Krakow, Poland, 2006. [S.1.]: Springer, 2006: 374-383.

同被引文献46

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部