期刊文献+

基于自适应背景信息的目标跟踪算法 被引量:1

Object tracking algorithm based on adaptive background information
下载PDF
导出
摘要 目标跟踪是计算机视觉应用的重要任务,兼顾算法性能和实时性是所有方法的共同目标。通过分析背景信息在目标跟踪的重要作用和影响,提出一种基于自适应背景信息概率密度函数的背景模板表示方法,改进传统核函数跟踪中的相似函数表达。实验表明,该算法在稍增加原有算法复杂度的情况下,抗背景干扰能力大大增强,并能准确跟踪快速运动目标和小目标。 Object tracking is one of the most important tasks in the application of computer vision.The consistent aim of all methods is to get better performance in the consideration of real-time.The importance and effect of background information on object tracking is analyzed in this paper,and a background template based on adaptive background information is proposed and combined with the traditional similarity function in kernel based object tracking.The proposed method is proved to be of better performance in the resistance of background interference and tracking of fast moving object and small object,at the cost of a little increase of computation.
出处 《信息与电子工程》 2011年第5期596-599,共4页 information and electronic engineering
关键词 目标跟踪 背景信息 自适应 核函数 相似函数 object tracking background information adaptive kernel similarity function
  • 相关文献

参考文献12

  • 1Dorin Comaniciu,Visvanathan Ramesh,Peter Meer. Kernel-Based Object Tracking[J]. IEEE Trans. Pattern AnaLysis and Machine Intelligence, 2003,25(5):564-577.
  • 2Dorin Comaniciu,Peter Meer. Mean Shift:A Robust Approach Toward Feature Space Analysis[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
  • 3Gergory D Hager,Maneesh De,an,Charles V Stewart. Multiple Kernel Tracking with SSD[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington:[s.n.J, 2004,1:790-797.
  • 4Sun Yan,Chen Xi,Li Caihui,et al. Section-Based Object Tracking[C]//Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics. Shanghai:[s.n.], 2009:249-252.
  • 5Saeed R,AmirBabaeean M B,GholamReza B. Metric Distance Transform for kernel Based Object Tracking[C]//4th Southeastern Symposium on. Tullahoma:[s.n.], 2009:54-58.
  • 6Choe J G,Joon Hong Seok,Ju Jang Lee. Mean-shift tracker with face-adjusted model[C]//Control,Automation and Systems. Seonl:[s.n.], 2008:816-819.
  • 7Jeyakar J,Babu R V,Ramakrishnan K R. Robust Object Tracking using Local Kernels and Background Information[C]//IEEE International Conference on Image Processing. San Antonio,TX:[s.n.], 2007,5:49-52.
  • 8陈向东,安国成,吴镇扬.增强抗背景干扰能力的均值移动目标跟踪算法[J].信息与电子工程,2008,6(1):40-45. 被引量:3
  • 9朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 10L1 Yuan,AI Haizhou,T Yamashita,et al. Tracking in Low Frame Rate Video:A Cascade Particle Filter with Discriminative Observers of Different Life Spans[C]// IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN:[s.n.]. 2007:1-8.

二级参考文献24

  • 1张立东,毕笃彦.基于改进直方图映射和均值移位目标跟踪算法[J].计算机工程,2006,32(20):25-27. 被引量:3
  • 2[1]FUKUNAGE K,HOSTETLER L D.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Trans.on Information Theory,1975,21(1):32-40.
  • 3[2]CHENG Y.Mean shift,mode seeking and clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 4[3]COMANICIU D,MEER P.Mean shift analysis and application[C]// Proceedings of the Seventh IEEE International Conference Computer Vison,1999,(2):1197-1203.
  • 5[4]COMANICIU D,MEER P.Mean shift:a robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 6[5]COMANICIU D,MEER P.Robust analysis of feature spaces:color image segmentation[C]// Proc.1997 IEEE conf.Computer Vision and Pattern Recognition.San Juan,Puerto Rico:IEEE,1997.
  • 7[6]YANG Changjiang,Ramani DURAISWAMI,Larry DAVIS.Similarity measure for nonparametric kernel density based object tracking[C]// Eighteenth Annual Conference on Neural Information Processing Systems.Victoria,British Columbia,Canada:NIPS,2004.
  • 8[7]Robert T,COLLINS.Mean-shift blob tracking through scale space[C]// 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'03),2003,2:234-240.
  • 9[8]NUMMIARO K,Koller-MEIER E,Van GOOL L.Color features for tracking non-rigid objects.Special Issue on Visual Surveillance[J].Chinese Journal of Automation,2003,29(3):345-355.
  • 10[9]Lee J H,Lee W H,Jeong D S.Object-tracking Method Using Back-projection of Multiple Color Histogram Models[J].Circuits and Systems,2003,2(2):668-671.

共引文献53

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部