期刊文献+

基于Hilbert R树的空间连接算法Cache性能分析

Cache Performance Analysis of Spatial Join Algorithm Based on Hilbert R-tree
下载PDF
导出
摘要 随着处理器和内存之间的性能差异日益增大,高速缓存被用来弥补这个差距,对于空间数据库操作来说,性能优化目标也从磁盘/内存层次转移到了内存/Cache层次。空间连接是空间数据库中最重要的操作之一,其执行效率直接影响空间查询的性能,但大多数传统的空间连接没有考虑Cache的利用。针对空间连接算法Cache使用的问题,分析了程序局部性对Cache利用的影响,对基于Hilbert R树的空间连接在内存中的性能进行了测试,比较了不同索引结点大小对空间连接性能和Cache访问性能的影响,为优化Cache敏感的空间连接提供了实验依据。 As the diversity of performance between processor and memory getting larger and larger, Cache is ued to make up the growing gap. The purpose of the performance optimization has been transferred from the disk/memory level to the memory/Cache level for operations in spatial databases. Spatial Join algorithm is one of the most important operations in spatial databases and its efficiency has a direct influence on the performance of the spatial queries. However, most of the traditional spatial join algorithms haven't taken enough consideration in the utilization of Cache. Focusing on the utilization of Cache in spatial join algorithms, the influence brought by the locality of the code is analyzed, the performance of spatial join based on Hilbert R-tree in main memory is tested. Besides, the impact on spatial join and performance of access to cache with different node size are compared. These results are very useful for improving the efficiency of the Cache-conscious spatial join.
出处 《现代电子技术》 2011年第21期189-192,共4页 Modern Electronics Technique
基金 国家自然科学基金(61070035 60902036 40801160)资助 高等学校博士学科点专项科研基金(20104307110017)资助 国家高技术研究发展计划(863计划)课题(2011AA120306)资助
关键词 Cache敏感 空间连接 局部性原理 HILBERT R树 Cache conscious spatial join principle of locality Hilbert R tree
  • 相关文献

参考文献11

  • 1HENNESY L John, PATTERSON A David. Computer ar- chitecture., a quantitative approach [M]. Fourth Edition. [S. 1. ] .. Elsevier, 2007.
  • 2LU H J, OOI B C. Spatial indexing., past and future [J]. IEEE Data Eng. , Bull. , 1993, 16(3): 16-21.
  • 3ZHOU Jingren, ROSS Kenneth A. Buffering database oper- ations for enhanced instruction cache performanee [C]. [S. 1.] : SIGMOD2004, 2004.
  • 4张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 5HUANG Y W, JING N, RUNDENSTEINER E, et al. Spatial joins using R-trees: breadth-first traversal with global optimizations [C]//Athens, Greece.. Proceedings of 23rd VLDB, 1997: 396-405.
  • 6KAMEL I, FALOUTSOS C. Hilbert R-tree: an improved R-tree using fraetals [C]// Santiago, Chile: Proeeedings of20th VLDB, 1994:500-509.
  • 7STAVROS Harizopoulos, ANASTASSIA Ailamaki, Improving instruction cache performance in OLTP [J]. TODS 2006, 31(3).. 887-920.
  • 8HE Bingsheng, LUO Qiong. Cache-oblivious database: limitations and opportunities [J].ACM Transactions on Database Systems, 2008, 33(2): 1-42.
  • 9AILAMAKI A. Database architectures for new hardware [C]//Proceedings of the 21st International Conference on Data Engineering. [S. 1.]: IEEE Computer Society, 2005, 1148.
  • 10RAO J, ROSS K R. Cache conscious indexing for decision- support in main memory [C]// Proceedings of 25th Inter- national Conference on Very Large Data Bases. [S. 1. ]: Morgan Kaufmann Publishers Inc. , 1999.. 78-89.

二级参考文献101

  • 1Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 2An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 3Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 4Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 5Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 6Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 7Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 8Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.
  • 9Papadopoulos A., Manolopoulos Y.. Nearest neighbor queries in shared-nothing environments. Geoinformatica, 1997, 1(4): 369~392.
  • 10Fu X., Wang D., Zheng W.. GPR-tree: A global parallel index structure for multiattribute declustering on cluster of work- stations. In: Proceedings of APDC'97, Shanghai, China, 1997, 300~306.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部