期刊文献+

基于复合分类器的网络入侵检测模型

Intrusion Detection Model Based on Hybrid Classifier
原文传递
导出
摘要 为提高国家电网网络入侵检测中攻击分类问题的准确度,提出一种基于复合分类器的入侵检测模型。复合分类器由核主成分分析、量子遗传算法和前馈(back propagation,BP)神经网络组合而成。复合分类器先使用核主成分分析将高维数的原始数据降维,降维后的数据再通过BP神经网络训练生成分类模型,其中BP神经网络的参数通过量子遗传算法优化得到,最后使用分类模型对待测样本做精确入侵检测分类。与传统入侵检测算法相比,基于复合分类器的入侵检测模型更准确。 In order to improve the accuracy of classification problem in intrusion detection for state grid,a novel intrusion detection model,which is based on the hybrid classifier,is proposed in this paper.The hybrid classifier is composed by kernel principal component analysis(KPCA),back propagation neural network(BPNN) and quantum genetic algorithm(QGA).In the hybrid classifier,KPCA is used to reduce dimensions of data.The classification model is trained by BPNN,of which the parameters are optimized by QGA.Based on the classification model,the data samples are classified by accurate intrusion detection.Compared with the traditional methods,the intrusion detection model based on hybrid classifier has better performance in reducing the calculation errors.
出处 《电力建设》 2011年第11期40-44,共5页 Electric Power Construction
关键词 入侵检测 核主成分分析 BP神经网络 量子遗传算法 复合分类器 分类器误差 intrusion detection kernel principal component analysis BP neural network quantum genetic algorithm hybrid classifier classifier error
  • 相关文献

参考文献4

二级参考文献29

  • 1王坤,潘继农,张鹏,郭云飞.基于主成份分析的异常检测方法研究[J].信息工程大学学报,2004,5(3):56-59. 被引量:2
  • 2谷雨,郑锦辉,孙剑,徐宗本.基于独立成分分析和支持向量机的入侵检测方法[J].西安交通大学学报,2005,39(8):876-879. 被引量:7
  • 3王杰,李冬梅.数据挖掘在网络入侵检测系统中的应用[J].微计算机信息,2006,22(04X):73-75. 被引量:15
  • 4Lee S.,Heinbuch D.,Training a neural-network based intrusion detector to recognize novel attacks,IEEE Transactions on Systems,Man and Cybernetics,Part A,2001,31 (4):294 ~299.
  • 5B.Balajiuath,S.V.Raghavan,Intrusion detection through learning behavior model,Computer Communication,2001,24 (2):1202 ~ 1212.
  • 6Ye,N.,A markov chain model of temporal behavior for anomaly detection,In Workshop on Information Assurance and Security,West Point,NY,June 2000.
  • 7S.Mukkamala,G.I.Janoski,A.H.Sung,Intrusion detection using support vector machines,Proceedings of the High Performance Computing Symposium-HPC 2002,pp.178 ~ 183,San Diego,April 2002.
  • 8B.Scholkopf,A.Smola,K.R.Muller,Nonlinear component analysis as a kernel eigenvalue problem,Neural Computation,1998,10 (5),1299 ~1319.
  • 9Vapnik V.N.,The nature of statistical learning theory,New York:Springer-Verlag,1995.
  • 10.[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.,.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部