期刊文献+

基于多参考点稳定图的斜拉桥模态参数识别 被引量:7

Modal Parameter Identification of Cable-Stayed Bridge Based on Multiple Reference DOFs Stabilization Diagram
下载PDF
导出
摘要 针对激励未知情况下,运行模态分析容易遗漏真实模态和产生虚假模态的问题,提出了基于特征系统实现算法的多参考点稳定图算法.该算法通过设置不同的参考点,利用自然激励技术结合特征系统实现算法识别模态参数,以阻尼比、基于输出矩阵的一致模态指标和模态置信度作为判别指标,确定可信度最高的模态参数.运用该算法和增强频域分解法对大跨度斜拉桥———崖门大桥的实测数据进行识别分析.结果表明,文中算法能准确地识别出低阶模态参数,能为有限元模型修正提供良好的基础. As it is easy for the operational modal analysis with unkown excitation to miss true modes and produce spurious modes, an improved multiple reference degrees of freedom(DOFs) stabilization diagram algorithm is proposed based on eigensystem realization algorithm. In this algorithm, by setting different reference DOFs in each group of data, the modal parameters are identified by means of the natural excitation technique in junction with the eigensystem realization algorithm. Then, the most accurate modal parameters are determined with damping ratio, observability matrix-based consistent mode indicator and modal amplitude coherence as the identification indexes. Finally, the proposed algorithm and the enhanced frequency domain decomposition method are both evaluated by means of the modal identification of the measured data of a long-span cable-stayed bridge, the Yamen Bridge. The results show that the proposed algorithm is capable of accurately identifying the low modes, thus providing a good basis for finite element model updating.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期41-47,53,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省交通运输厅科技项目(2010-02-015)
关键词 斜拉桥 运行模态分析 多参考点稳定图 自然激励技术 特征系统实现算法 增强频域分解 cable-stayed bridge operational modal analysis multiple reference DOFs stabilization diagram natural excitation technique eigensystem realization algorithm enhanced frequency domain decomposition
  • 相关文献

参考文献18

  • 1He X, Moaveni B, Conte J P, et al. Comparative study of system identification techniques applied to New CarquinezBridge [ C ]//Proceedings of the 3rd International Confe- rence on Bridge Maintenance, Safety and Management. Porto : Taylor & Francis ,2006:259-260.
  • 2Nayeri R D, Tasbihgoo F, Wahbeh M, et al. Study of time- domain techniques for modal parameter identification of a long suspension bridge with dense sensor arrays [ J ]. Journal of engineering mechanics, 2009, 135 ( 7 ) : 669- 683.
  • 3Chiang D Y, Lin C S. Identification of modal parameters from ambient vibration data using eigensystem realizationalgorithm with correlation technique [ J ]. Journal of Me- chanical Science and Technology, 2010,24 ( 12 ) : 2377- 2382.
  • 4Heylen W, Lammens S, Sas P. Modal analysis theory and testing [ M ]. Leuven: Department of Mechanical Engi- neering, Katholieke University Leuven, 1995.
  • 5Pappa R S, James G H,Zimmerman D C. Autonomous mo- dal identification of the space shuttle tail rudder [ J ]. Journal of Spacecraft and Rockets, 1998,35 (2) : 163- 169.
  • 6李炜明,朱宏平,吴贤国,夏勇.未知激励下框架结构系统辨识的特征系统实现算法[J].振动与冲击,2010,29(8):228-231. 被引量:10
  • 7Peeters B, De Roeck G. Reference based stochastic sub-space identification for output-only modal analysis [ J ]. Mechanical Systems and Signal Processing, 1999,13 (6) : 855-878.
  • 8Lanslots J, Scionti M. Automatic assessment of stabiliza- tion diagrams [ R ]. Leuven : LMS International, TST Re- search & Technology Development,2002.
  • 9Prevosto M. Algorithmes d'Identification des caracteris- tiques vibratoires de structures mecaniques complexes [ D ]. Rennes : INRIA de Rennes, Universite de Rennes 1, 1982.
  • 10Brincker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain decom-position [ C]//Proceedings of 18th International Modal Analysis Conference. San Antonio: Society for Experi- mental Mechanics,2000:625-630.

二级参考文献15

  • 1Juang J N, Applied System Identification, Prentice Hall, Inc. , Englewood Cliffs, New Jersey 07632, 1994.
  • 2Juang J N, Phan M Q. Identification and Control of Mechanical Systems [ M ]. Cambridge University, Press, New York, NY.
  • 3Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction [ J ]. J. Guidance, Control and Dynamics, 1985, 8 (5): 620 - 627.
  • 4Pappa R S, Woodard S E, Juang J N. A benchmark problem for development of autonomous structural modal identification[C]. Proceedings of the 15th International Modal Analysis Conference-Imac, Vols I and Ii. 1997, 3089:1071 -1077.
  • 5Pappa R S. Independent analysis of the space station node modal test data[ C ]. Imae-Proeeedings of the 16th International Modal Analysis Conference, Vols 1 and 2. 1998, 3243 : 276 - 283.
  • 6Pappa R S, James G H, Zimmerman D C. Autonomous modal identification of the space shuttle tail rudder [J].Journal of Spacecraft and Rockets, 1998, 35 (2) : 163 - 169.
  • 7Pappa R S. Independent analysis of the space station node modal test data[J]. Journal of Guidance Control and Dynamics,1999, 22(1) : 22 -27.
  • 8Pritchard J, Buehrle R, Pappa R, et al. Comparison of modal analysis methods applied to a vibro-aeoustic test article [ C ]. Proceedings of Imac-Xx: Structural Dynamics Vols I and Ii. 2002, 4753 : 1144 - 1152.
  • 9Peterson L D, Alvin K F. Time and frequency domain procedure for identification of structural dynamic models[J]. Journal of Sound and Vibration, 1997, 201 ( 1 ) : 137 - 144.
  • 10Lus H, Betti R, Longman R W. Identification of linear structural systems using earthquake-induced vibration data [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(11) : 1449 - 1467.

共引文献9

同被引文献68

引证文献7

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部