期刊文献+

日本电子JMS-S3000的开发——具有螺旋状离子轨道的MALDI-TOF/TOF-MS

Development of JMS-S3000-MALDI-TOF/TOF MS Utilizing a Spiral Ion Trajectory
下载PDF
导出
摘要 日本电子开发了一种具有螺旋状离子轨道的新型离子光学系统,它超越了现在市场上多数采用的反射式离子光学系统的基本性能;而且还开发了MALDI-TOF/TOF-MS(型号为JMS-S3000),在第1个TOF MS中采用螺旋状轨道离子光学系统,第2个TOF MS中采用反射式离子光学系统,从而实现了以前的质谱仪器达不到的高质量分辨率和高母离子选择性。JMS-S3000质谱图显示:在m/z2093质量分辨率不仅超过60,000(FWHM),而且在很宽的质量范围也能达到高质量分辨率。JMS-S3000具有高母离子选择性,只选择母离子的单一同位素离子,所以各个断裂途径的峰在子离子谱图上能够清晰地被看到其对应的信号峰,使得子离子谱图的解析变的更加简单明确。 We have developed the JMS-S3000,matrix assisted laser / desorption ionization time-of-flight mass spectrometer(MALDI-TOF-MS).An innovative ion optical system,which achieved a spiral ion trajectory,surpassed basic specification of the reflectron ion optical system presently used in most commercially available TOF-MSs.Furthermore,we have developed the TOF-TOF option for the JMS-S3000.In the case of attaching the TOF-TOF option,a spiral ion optical system is adopted for the first TOF-MS,whereas a reflectron ion optical system with offset parabolic reflectron is adopted for the second one.Utilizing the spiral trajectoy ion optical system,the JMS-S3000 provides unprecedentely high mass resolution and high precursor ion selectivity.In this paper,we demonstrate not only the high mass resolution of more than 60,000(FWHM) at m/z 2093 but also achievement of high mass resolution over a wide mass rang.In addition,we present the high selectivity that enables selection of monoisotopic ions of precursor ions.By selecting only monoisotopic ions of precursor ions,one signal peak corresponding to each fragmentation channel is observed on a product ion spectrum.Consequently,the analysis of the product ion spectrum is made clearer.
出处 《现代科学仪器》 2011年第5期178-181,共4页 Modern Scientific Instruments
关键词 螺旋轨道型离子光学系统 反射式离子光学系统 母离子 子离子 选择性 多重反射型 多重盘旋型 MALDI-TOF/TOF MS Spiral trajectoy ion optical system Reflect ion optical system Precursor ion Product ion Selectivity MALDI-TOF/ TOF MS Multireflect Multiturn
  • 相关文献

参考文献13

  • 1W. E. Stelphens. Phys. Rev., 69, 691 (1946).
  • 2W. C. Wiley and I. H.McLaren, Rev. Sci. Instrum. 26, 1150 (1955).
  • 3B. A. Mamyrin, V. I. Karataev, D. V. Shmikk and V A. Zagulin, So. Phys. JETP. 3745 (1973).
  • 4W. P. Poschenrieder, Int. J. Mass Spectrom.Ion. Phys 6, 357 (1972).
  • 5H. Wollnik and 227, 217 (2003).
  • 6M. Toyoda, M A. Casares, Int. J. Mass Spectrometry, Ishihara and H. Rosenbauer, J. Mass Spectrom., 35, 163 (2000).
  • 7D. Okumura, M. Toyoda, M. Ishihara and I. Katakuse J. Mass Spectrom. Soc. Jpn., 51, 349 (2003).
  • 8M. Yavor, A. Verentchikov, J. Hasin, B. Kozlov, M. Gavrik and A. Trufanov, Physics Procedia l, 391 (2008).
  • 9T. Satoh, H. Tsuno, M. Iwanaga, Y. Kammei, J. Am. Soc. Mass Spectrom., 16, 1969 (2005).
  • 10T. Satoh, H. Tsuno, M. Iwanaga, and Y. Kammei, J. Mass Spectrom. Soc. Jpn., 54, 11 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部