期刊文献+

一类四维超混沌系统的界及同步的研究 被引量:5

The bound for a class of four-dimensional hyperchaotic system and its synchronization
原文传递
导出
摘要 文章研究了一类四维连续自治系统,在一定条件下它只有一个平衡点,却表现出复杂的动力学行为.文章首先分析了系统的平衡点及李雅普诺夫指数;其次对该系统的界进行了估计,给出了界的表达式.通过设计一个控制器,研究了该四维超混沌系统的完全同步,并做出了相应的数值模拟. In this paper,a class of four-dimensional continuous autonomous system is studied.It has only one balance under certain conditions but it shows a complicated dynamic behavior.The equilibrium points and lyapunov exponents of the system are analyzed.The bound of this system is estimated and the expression of the bound is presented.In addition,the complete synchronization is also discussed by designing a linear controller.Finally,the corresponding numerical simulations are performed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第11期143-149,共7页 Acta Physica Sinica
关键词 超混沌系统 李雅普诺夫指数 混沌系统的界 同步 hyperchaotic system Lyapunov exponent bound of chaotic system synchronization
  • 相关文献

参考文献2

二级参考文献38

共引文献31

同被引文献62

  • 1LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 2徐玉秀,胡海岩,闻邦椿.杜芬方程的1/3纯亚谐解及过渡过程的分形特征研究[J].应用数学和力学,2006,27(9):1023-1028. 被引量:3
  • 3Pecora L M,Carroll T L.Synchronization of chaotic systems[J].Physical Review Letters,1990,64(8):821-830.
  • 4Carroll T L,Pecora L M.Synchronizing chaotic circuits[J].IEEE Transactions on Circuits and Systems,1991,38(4):453-456.
  • 5Chen C H,Sheu L J,Chen H K,et al.A new hyper-cha-otic system and its synchronization[J].Nonlinear Analy-sis:Real World Application,2009,10(4):2088-2096.
  • 6Feng J W,Chen S H.Adaptive synchronization of uncer-tain hyperchaotic systems based in parameter identification[J].Chaos,Solitons and Fractals,2005,26(4):1163-1169.
  • 7Wang Z L.Anti-synchronization in two non-identicalhyperchaotic systems with known or unknown parameters[J].Commun nonlinear sci numer simulat,2009,14:2366-2372.
  • 8Li Damei, Lu Jun-an, Wu Xiaoqun, et al.Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J].Journal of Mathematical Analysis and Applications, 2006,323 (2) : 844-853.
  • 9Liao Xiaoxin.On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[J].Sci China Ser E,2004, 34:1404-1419.
  • 10Leonov G, Bunin A, Koksch N.Attractor localization of the Lorenz system[J].ZAMM, 1987,67:649-656.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部