摘要
文章研究了一类四维连续自治系统,在一定条件下它只有一个平衡点,却表现出复杂的动力学行为.文章首先分析了系统的平衡点及李雅普诺夫指数;其次对该系统的界进行了估计,给出了界的表达式.通过设计一个控制器,研究了该四维超混沌系统的完全同步,并做出了相应的数值模拟.
In this paper,a class of four-dimensional continuous autonomous system is studied.It has only one balance under certain conditions but it shows a complicated dynamic behavior.The equilibrium points and lyapunov exponents of the system are analyzed.The bound of this system is estimated and the expression of the bound is presented.In addition,the complete synchronization is also discussed by designing a linear controller.Finally,the corresponding numerical simulations are performed.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2011年第11期143-149,共7页
Acta Physica Sinica
关键词
超混沌系统
李雅普诺夫指数
混沌系统的界
同步
hyperchaotic system
Lyapunov exponent
bound of chaotic system
synchronization