期刊文献+

基于高斯过程分类器的三维模型多粒度语义检索

3D Model Retrieval with Multi-Granular Semantics Based on Gaussian Process Classifier
原文传递
导出
摘要 为解决三维模型语义检索中用户检索意图不一致问题,建立多粒度语义检索框架,使学习模型能够有效地适应用户的不同检索意图.首先对模型分类知识进行层次划分,形成语义概念的多粒度结构.然后提取一种多视图特征来描述三维模型的形状特性,并采用高斯过程分类器建立不同粒度层次上的学习模型,实现低层特征和查询概念之间的语义一致性描述.和已有研究相比,多粒度语义检索框架使用户可通过语义粒度级别变化进行检索意图设置,从而检索结果尽可能符合用户语义.在实验部分,采用三维模型基准数据库对框架进行算法性能测试.结果表明,检索准确率要明显提高,并且符合人类思维特点. In order to solve the inconsistency between users' intentions in semantic 3 D model retrieval system, a retrieval framework with multi-granular semantics is established, in which learning model can adapt to different user search intentions. Firstly, model classification is divided into different levels and the multi- granularity structure of semantic concept is formed. Then, a hybrid shape feature based on views is used to describe the shape characteristics of 3D model. And the Gaussian process classifier is used to associatelow-level features with query concepts on a different level of semantic concept. Compared with existing research, the retrieval framework with multi-granular semantics allows the users to set their retrieval intentions according to selecting the granular level of semantics, and the results meet the user semantics as much as possible. The experimental results of retrieval performance evaluation using the benchmark show that the retrieval performance using proposed method is significantly higher than content-based retrieval and confident with human concept.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第5期597-603,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60703001) 国家973计划项目(No.2009CB320804) 广东省教育部产学研结合项目(No.2010B090400193) 浙江省教育厅科研项目(No.Y200702635)资助
关键词 三维模型检索 多粒度语义 形状特征 高斯过程 3D Model Retrieval, Multi-Granular Semantics, Shape Feature, Gaussian Process
  • 相关文献

参考文献2

二级参考文献16

  • 1杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310. 被引量:95
  • 2孙晓鹏,李华.三维网格模型的分割及应用技术综述[J].计算机辅助设计与图形学学报,2005,17(8):1647-1655. 被引量:49
  • 3王玉,马浩军,何玮,肖煜中,周雄辉.机械3维CAD模型的聚类和检索[J].计算机集成制造系统,2006,12(6):924-928. 被引量:15
  • 4Osada R, Funkhouser T, Chazelle B, Dobkin D. Matching 3D Models with Shape Distributions. In: Proc of the International Conference on Shape Modeling and Applications. Genova, Italy,2001, 154-166.
  • 5Ohbuchi R, Otagiri T, Ibato M, Takei T. Shape-Similarity Search of Three-Dimensional Models Using Parameterized Statistics. In: Proc of the Pacific Conference on Computer Graphics and Applications. Beijing, China, 2002, 265-274.
  • 6Hilaga M, Shinagawa Y, Kohmura T. Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In: Proc of the International Conference on Computer Graphics and Interactive Techniques. Los Angeles, USA, 2001, 203-212.
  • 7Campbell R J, Flynn P J. A Survey of Free-Form Object Repre Jsentation and Recognition Techniques. Computer Vision and Image Understanding, 2001, 81(2): 166-210.
  • 8Dorai C, Jain A K. COSMOS-A Representation Scheme for 3D Free-Form Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(10):1115-1130.
  • 9Vranic D V, Saupe D. 3D Shape Descriptor Based on 3D Fourier Transform. In: Proc of the EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services.Budapest, Hungary, 2001, 271 - 274.
  • 10Antani S, Kasturi R, Jain R. A Survey on the Use of Pattern Recognition Methods for Abstraction, Indexing, Retrieval of Images and Video. Pattern Recognition, 2002, 35(4): 945-965.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部