期刊文献+

一种选择标注分层流形学习算法

A Selecting Landmark Hierarchical Manifold Learning Algorithm
原文传递
导出
摘要 流形数据的查询需要使用流形的嵌入表示,因此查询流形数据需要访问大量的样本数据.提出一种选择标注分层流形学习算法,选择出的标注点集用来帮助查找流形数据.首先采用自适应近邻算法求出每个数据的最优近邻,然后构造测地线矩阵,最后逐步迭代随机选择标注点,求出每个标注点的极大单元子集,直到流形数据集变成空集,形成初始标注点集.此外,还要优化标注点集.实验结果证明所选择的标注点集保持流形的拓扑特性,可有效帮助查询流形数据. The manifold data query needs the manifold embedded representation. Thus it often involves accessing considerable volume of data. An approach of hierarchical manifold learning algorithm based on selecting landmark points from the given samples is proposed for representing data on manifold. The landmarks set can help locate the novel points on the data manifold. Firstly, an adaptive nearest neighbor's method is employed to extract the nearest neighborhood of each data. Then the geodesic matrix is constructed. Finally, a landmark point is randomly selected in landmark point set, and its maximum cell is found till the manifold set is empty and the rough landmark point set is formed. In addition, the landpoint set is optimized. The experimental results prove that the proposed method preserves the topological features of manifold, and it helps inquire the manifold data efficiently.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第5期707-712,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60775045 61033013) 江苏省自然科学基金(No.BK2005027 BK2002040)资助项目
关键词 选择标注分层流形学习(SLHML) 标注点 拓扑错误点 Selecting Landmarks Hierarchical Manifold Learning (SLHML), Landmark Point,Topological Error Point
  • 相关文献

参考文献13

  • 1Tenebaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500) : 2319-2323.
  • 2Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Lo- cally Linear Embedding. Science, 2000, 290(5500) : 2323 -2326.
  • 3Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Re- duction and Data Representation. Neural Computation, 2003, 15 (6) : 1373 -1396.
  • 4Donoho D L, Grimes C. Hessian Eigenmaps: New Locally Linear Embedding Techniques for High Dimensional Data// Proc of the National Academy of Sciences of the USA, 2003, 100 ( 10 ) : 5591 - 5596.
  • 5Zhang Zhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 2005, 26( 1 ) : 313 -338.
  • 6Lin Tong, Zha Hongbin. Riemannian Manifold Learning. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30 (5) : 796 - 809.
  • 7Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduc- tion. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 ( 1 ) : 40 - 51.
  • 8Vasiloglou N, Gray A G, Anderson D V. Parameter Estimation for Manifold Learning through Density Estimation// Proc of the 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing. Arlington, USA, 2006 : 211 - 216.
  • 9Jenssen R, Erdogmus D, Principe J, et al. The Laplacian PDF Dis- tance: A Cost Function for Clustering in a Kernel Feature Space// Saul L K, Weiss Y, Botton L, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2005, XV[I:625 -632.
  • 10Bengio Y, Paiement F, Vincent P, et aL Out-of-Sample Exten- sions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering //Proc of the 18th Annual Conference on Neural Information Pro- cessing Systems. Vancouver, Canada, 2004 : 177 - 184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部