期刊文献+

光线寻优算法在函数优化中的应用 被引量:2

Light Ray Optimization Algorithm and its Applications to Function Optimization
下载PDF
导出
摘要 光线寻优算法是一种模拟光传播过程的智能优化算法,具有可调参数少、结构简单、容易实现等优点。该算法用网格划分可行域,将具有不同折射率的介质填充到各网格中,并将光在此变折射率介质中的传播路径设想成算法的寻优路径,从而达到自动搜索寻优的目的。将光线寻优算法用于求解文献中的6个标准测试函数,并与模拟退火算法、保留精英遗传算法、标准粒子群算法进行比较,通过大量数值实验验证了算法的可行性、有效性及潜在的优越性。 The light ray optimization algorithm as an intelligent optimization algorithm simulating the propagation process of light rays is discussed, which has the advantages of simple structure, few tuning parameters and easy tuning. The feasible region is divided by grids in which the media with different refracitivities are put, and then a beam of light rays propagate in these media to search the optimal val- ue automatically in this algorithm. The light ray optimization is used to solve six standard test functions in literature, and is compared with the simulated annealing, the elitist genetic algorithm, and the standard particle swarm optimization. The numerical experiments show the feasibility, validity and potential advantages of the proposed algorithm.
出处 《控制工程》 CSCD 北大核心 2011年第6期845-847,850,共4页 Control Engineering of China
基金 黑龙江省自然科学基金资助(F200931)
关键词 费马原理 智能优化 光线寻优算法 函数优化 Fermat's principle intelligent optimization light ray optimization algorithm function optimization
  • 相关文献

参考文献13

  • 1Saraiva J T, Pereira M L, Mendes V T, et al. A simulated annealing based approach to solve the generator maintenance scheduling problem[ J ]. Electric Power Systems Research,2011,81 (3) : 1283-1291.
  • 2Li F, Xu L D, Jin C,et al. Structure of Multi-Stage composite genetic algorithm (MSC-GA) and its performance [ J ]. Expert Systems with Applications ,2011,38 (2) :8929-8937.
  • 3Thangaraj R, Pant M, Abraham A, et al. Particle swarm optimization: hybridization perspectives and experimental illustrations [ J ]. Applied Mathematics and Computation ,2011,217( 1 ):5208-5226.
  • 4Shen J H, Li Y. An optimization algorithm based on optical principles[J]. Advances in Systems Science and Applications, 2009, 9 (4) : 647-655.
  • 5Shen J H, Li Y. Light ray optimization and its parameter analysis [ C ]. Sanya, China: Proceeding of the 2009 International Joint Conference on Computational Sciences and Optimization, 2007.
  • 6沈继红,李焱.一基于正六边形网格的光线寻优算法[C].北京,中国:中国运筹学会第十届学术交流会,2010.
  • 7Shen J H,Li Y. Light ray optimization with function transform [ C ]. Shanghai, China: The 8th International conference on optimization: Techniques and Applications, 2010.
  • 8Shen J H, Li J L. The principle analysis of light ray optimization algorithm[ C]. Wuhan, China: 2010 Second International Conference on Computational Intelligence and Natural Computing, 2010.
  • 9Shen J H, Li J L. Light ray optimization algorithm and convergence analysis for one dimensional problems [ C ]. Hang Kong, China: 2011 International Conference on Fuzzy Systems and Neural Computing, 2011.
  • 10Kwan A, Dudley J, Lantz E. Who really discovered snell's Law[J]. Physics World, 2002,15(2) :64.

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部