期刊文献+

基于PSO优化的非线性系统无模型控制方法 被引量:2

Model Free Control Method Based on Particle Swarm Optimization for Nonlinear Systems
下载PDF
导出
摘要 针对一类非线性离散时间动态系统,提出了基于改进泛模型的非线性控制方法并对该控制律作用下系统的BIBO稳定性及收敛性进行了分析。该方法在改进泛模型的基础之上,根据二次型性能指标设计最优控制律,其中,时变特征参量建立AR模型进行预报,控制律中的未知参数采用粒子群优化(PSO)算法进行优化。经过优化后的控制律作用于该非线性对象,可以收到良好的控制效果。该方法的优势在于简单而且易于实现。仿真结果表明了算法的有效性。 A nonlinear control method is proposed based on improved universal model for a class of nonlinear discrete time dynamic systems, and the BIBO stability and convergence of the controlled system are analyzed. On the basis of the improved universal model, the optimal control law is designed according to quadratic type performance target, in which the time-varying characteristic parameter is predicted by establishing the AR model. The unknown parameters in the control law are optimized by particle swarm optimization (PSO). The better control effect can be obtained by using the control law optimized. This method has the advantage of simplisity and is easy to implement. Simulation results show the effectiveness of the method.
出处 《控制工程》 CSCD 北大核心 2011年第6期861-863,965,共4页 Control Engineering of China
基金 黑龙江省普通高等学校电子工程重点实验室基金项目(DZZD20100023)
关键词 改进泛模型 粒子群优化 特征参量 收敛性 improved universal model particle swarm optimization characteristic parameter convergence
  • 相关文献

参考文献7

二级参考文献64

共引文献104

同被引文献32

  • 1韩志刚,汪国强.无模型控制律串级形式及其应用[J].自动化学报,2006,32(3):345-352. 被引量:22
  • 2SU Cheng-li,WANG Shu-qing.Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1723-1732. 被引量:7
  • 3侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:125
  • 4GE S S, HONG F, LEE T H. Adaptive neural network control of nonlinear systems with unknown time-delays [ J ]. IEEE Transactions on Automatic Control, 2003, 48 ( 11 ) : 2004-2010.
  • 5TSENG Chungshi. Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1) : 58-70.
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]//Proceedings of the IEEE International Conference on Neural Networks. Perth, USA, 1995, 4: 1942-1948.
  • 7LIN L H, WANG F C, YAN J Y. Robust PID controller design using particle swarm optimiza|ion [ C ]//Proceedings of 7th Asian Control Conference. Hong Kong, China, 2009: 1673-1678.
  • 8ANGEI,INE P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences[J], Leeture Notes in Computer Science, 1998, 1447: 601-610.
  • 9WEN Lei, XI Zhaocai. The research of PSO algorithms with non-linear lime-decreasing inertia [ C ]//Proceedings of Ihe Conference on Intelligent Control and Automation. Chongqing, China, 2008: 4002-4005.
  • 10金尚泰,侯忠生.一类非线性大滞后系统的改进无模型自适应控制[J].控制理论与应用,2008,25(4):623-626. 被引量:24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部