期刊文献+

离子液体介质中催化合成生物柴油技术研究 被引量:2

Catalytic Synthesis of Biodiesel by Using Ionic Liquid as Reaction Medium
下载PDF
导出
摘要 生物柴油作为一种可替代再生性清洁能源,成为新能源领域研究和开发的热点之一。廉价的原料、新合成工艺和高效催化剂技术是降低生产成本,促使该项技术推广应用的发展方向。离子液体作为一种功能可设计的新型绿色溶剂和催化剂,在化学反应和过程开发中显示出了独特的应用前景。将离子液体用于生物柴油制备是近年来新发展的方向,回顾了离子液体在酯交换反应制备生物柴油方面的研究进展,分别就离子液体为溶剂和催化剂时对生物柴油制备工艺的影响进行了分析和讨论,在此基础上,指出了应该着力解决的关键问题。 Biodiesel, as a kind of renewable and clean energy, is becoming one of the research and development hotspots in new energy fields. To reduce the production cost and prompt the technology application, several directions are developed for biodiesel research such as using cheap raw material, new synthesis process and efficient catalyst. Ionic liquid which is characterized by functional design is a green catalyst and solvent, and it has shown unique application prospect in the chemistry and process development. The application of ionic liquid in the field of biodiesel production is a new direction developed in recent years.In this paper, the research progress of ionic liquid in the biodiesel production by transesterification was reviewed. Effects of ionic liquid as solvent and catalyst on the biodiesel preparation process were analyzed and discussed respectively. On this basis, the major issues that need to be resolved were also pointed out.
出处 《当代化工》 CAS 2011年第10期991-996,共6页 Contemporary Chemical Industry
基金 国家自然科学基金项目 项目号:20976026
关键词 生物柴油 离子液体 酯交换反应 可再生能源 工艺开发 Biodiesel Ionic liquid Transesterification Renewable energy sources Process development
  • 相关文献

参考文献47

二级参考文献100

共引文献243

同被引文献35

  • 1高翔,刘丽丽,刘秀凤,张宝泉,林跃生.加压和超临界流体在多孔膜中的渗透[J].高校化学工程学报,2005,19(5):577-582. 被引量:5
  • 2Eckert CA, Knutson BL, Debenedetti PG. Supercritical fluids as solvents for chemical and materials processing[J]. Nature, 1996,383(6598): 313-318.
  • 3Sarrade S, Rios GM, Caries M. Nanofiltration membrane behavior in a supereritical medium[J]. Journal of Membrane Science, 1996, 114(1): 81-91.
  • 4Patil VE, van den Broeke LJP, Vercauteren FF, et al. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes[J]. Journal of Membrane Science, 2006, 271(1-2): 77-85.
  • 5Patil V, Meeuwissen J, Vandenbroeke L, et al. Permeation of supercritical fluids across polymeric and inorganic membranes[J]. The Journal of Supercritical Fluids, 2006, 37(3): 367-374.
  • 6Romero J, Le Cam S, Sanchez J, et al. Permeation of supercritical fluids through a MFI zeolite membrane[J]. Chemical Engineering Science, 2001, 56(10): 3139-3148.
  • 7Akin O, Temelli F. Effect of supercritical CO2 flux, temperature and processing time on physicochemical and morphological properties of commercial reverse osmosis membranes[J]. The Journal of Supercritical Fluids, 2011, 60: 81-88.
  • 8Tan CS, Lien HC, Lin SR, et al. Separation of supercritical carbon dioxide and caffeine with mesoporous silica and microporous silicalite membranes[J]. Journal of Supercrltical Fluids, 2003, 26(1): 55-62.
  • 9Ruivo R, Couto R, Simoes PC. Supercritical carbon dioxide fractionation of the model mixture squalene/oleic acid in a membrane contactor[J]. Separation and Purification Technology, 2008, 59(3): 231-237.
  • 10Peay KA, Bothun GD, Anim-Mensah A, et al. Ultrafihration of W/CO2 microemulsions in ceramic membranes[J]. Separation Science and Technology, 2006, 41(11): 2603-2612.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部