摘要
固定顶油罐由于温度变化和装卸作业存在着呼吸损耗,如何减少油品的蒸发损耗是石油行业日益关注的问题。针对油罐的"小呼吸"损耗进行计算分析,增加油罐的呼吸阀控制压力减少呼吸损耗。同时,控制压力的升高又会增加罐壁和罐顶厚度,增大油罐的钢材损耗量。通过对呼吸损耗和钢材用量进行经济分析,建立了钢材费用和蒸发损耗优化的数学模型,编制VC++求解程序。通过具体算例得到最优的呼吸阀控制压力,使费用(蒸发损耗费用和钢材年金)最小,提高了油库经济效益。
There is breathing loss in the fixed roof tank because of temperature change and handling operation, so the problem how to reduce oil vaporization loss has increasingly been focused by oil industry. In this paper, small breathing loss of the oil tank was computed and analyzed. The results show that, to increase the controlled pressure of tank breather valve can reduce breathing loss, but the controlled pressure increase will add the thickness of tank-shell and tank roof, which will increase steel consumption of the tank. Through economic analysis on the breathing loss and steel consumption, the optimization mathematical mode of steel expenses and vaporization loss was established. Formulate vc + + was used to solve the program. Through a specific example calculation, the optimal breather controlled pressure was determined, which can minimize costs (the vaporization loss cost and steel annuity) and improve economic benefits of the oil depot.
出处
《当代化工》
CAS
2011年第10期1076-1078,共3页
Contemporary Chemical Industry
关键词
小呼吸损耗
控制压力
罐壁强度计算
罐顶厚度
钢材损耗
Small breathing loss
Controlled pressure
Tank-shell strength calculation
Tank top thickness
Steel consumption