期刊文献+

典型场景下EKF-SLAM估计一致性分析 被引量:4

Consistency Analysis of EKF-SLAM for a Basic Scenario
下载PDF
导出
摘要 分析了典型场景下基于扩展卡尔曼滤波的同步定位和地图创建(EKF-SLAM)算法的估计一致性.通过理论分析证明了在移动机器人保持静止并持续对一个路标进行观测的场景下,如果机器人的初始位姿协方差矩阵为对角阵,则机器人位置估计的均值和协方差保持不变,而朝向估计将逐步失去一致性.此外,通过蒙特卡罗仿真给出了机器人朝向和路标估计下界的分布情况.结果表明,两者均服从正态分布,因此EKF-SLAM算法在概率意义下给出SLAM系统状态向量的无偏估计. The consistency of the extended Kalman filter-based simultaneous localization and mapping (EKF-SLAM) is addressed in this article. It is theoretically proven that, for a basic scenario that the mobile robot is stationary and keeps observing a stationary landmark, the estimates of the position and its uncertainty of the robot remain the same as the initial values on condition that the initial covariance matrix of the robot pose is diagonal. The estimate of heading uncertainty will become inconsistent as the number of observation increases. The distributions of the lower bounds of robot heading and landmark position are obtained by Monte Carlo simulations. Simulation results show that both of two distributions follow a normal distribution, hence the EKF-SLAM algorithm provides unbiased estimates of the SLAM state vector in the sense of probability.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第10期1194-1197,1202,共5页 Transactions of Beijing Institute of Technology
基金 北京市教委共建基金资助项目(100070522)
关键词 同步定位和地图创建 扩展卡尔曼滤波 一致性分析 simultaneous localization and mapping (SLAM) extended Kalman filter(EKF) consistency analysis
  • 相关文献

参考文献11

  • 1Hugh D, Bailey T. Simultaneous localization and mapping: part I [J]. IEEE Robotics and Automation Magazine, 2006,13(2) :99 - 110.
  • 2Asadi E, Bozory M. A decentralized architecture for simultaneous localization and mapping [J]. IEEE/ ASME Transactions on Mechatronics, 2009, 14 (1) : 64 - 71.
  • 3Dissanayake G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001,17(3) :229 - 241.
  • 4Guivant J, Nebot E. Solving computational and memory requirements of feature-based simultaneous localization and mapping algorithms [J ]. IEEE Transactions on Rorotics and Automation, 2003,19 (4) : 749 - 755.
  • 5Williams S, Mahon I. Simultaneous localization and mapping on the greater barrier reef[C]//Proceedings of IEEE Intl Conf on Roboties and Automation. [S. 1. ] : IEEE, 2004..1771 - 1776.
  • 6Jong- Hyuk K, Sukkarieh S. Airborne simultaneous lo- calization and map building[C]///Proceedings of IEEEIntl Conf on Robotics and Automation. [-S. 1. ] : IEEE, 2003 :406 - 411.
  • 7Diego R, Matia F, Pedraza L, et al. Consistency of SLAM-EKF algorithms for indoor environments [J]. Journal of Intelligent and Robotic Systems, 2007,50(4):375 -397.
  • 8季秀才,郑志强,张辉.SLAM问题中机器人定位误差分析与控制[J].自动化学报,2008,34(3):323-330. 被引量:35
  • 9Julier S, Uhlmann J. A counter example to the theory of simultaneous localization and map building [ C]// Proceedings of IEEE Intl Conf on Robotics and Automation. [S. 1. ] : IEEE,2001:4238 - 4243.
  • 10Bailey T, Nieto J, Guivant J, et al. Consistency of the EKF-SLAM algorithm[C]//Proceedings of The IEEE/ RSJ Int Conf on Intelligent Robots and Systems. [S. 1. ]: IEEE, 2006:3562 - 3568.

二级参考文献19

  • 1厉茂海,洪炳镕,罗荣华.移动机器人的同时定位和地图创建方法[J].哈尔滨工业大学学报,2004,36(7):874-876. 被引量:4
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 3Frese U. A discussion of simultaneous localization and mapping. Autonomous Robots, 2006, 20(1): 25-42
  • 4Leonard J J, Durrant-Whyte H F, Cox I J. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 1992, 11(4): 286-298
  • 5Dissanayake M W M G, Newman P, Clark S, Durrant- Whyte H F, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241
  • 6Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics autonomous robot vehicles. Autonomous Robot Vehicles. New York: Springer-Verlag, 1988. 167-193
  • 7Cuivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257
  • 8Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: AAAI, 2002. 593-598
  • 9Thrun S, Koller D, Ghahramani Z, Durrant-Whyte H F, Ng Y A. Simultaneous mapping and localization with sparse extended information filters: theory and initial results. In: Proceedings of the 5th International Workshop on Algorithmic Foundations of Robotics. Nice, France: IEEE, 2002. 363--380
  • 10Thrun S. Robotic Mapping: A Survey, Technical Report CMU-CS-02-111, School of Computer Science, Carnegie Mellon University, USA, 2002

共引文献34

同被引文献21

  • 1Durrant-Whyte H, Bailey T. Simultaneous localization and mapping (SLAM).. part I essential algorithms [J]. IEEE Robotics and Automation Magazine,2006,13(2) : 99-108.
  • 2Durrant-Whyte H, Bailey T. Simultaneous localization and mapping (SLAM) ..part II state of the art[J]. IEEE Ro- botics and Automation Magazine, 2006,13(3): 108-117.
  • 3Wang Y M, Yang JB, Xu DL. A preference aggregation method through the estimation of utility intervals[J]. Computers and operations research, 2005 (32) : 2 027-2 049.
  • 4Blanco J L, Gonzalez J, Fernandez-Madrigal J A. Subiective local maps for hybrid metric-topological SLAM[J]. Robotics and Autonomous Systems, 2009, 57(1) :64 - 74.
  • 5Choi Y H, Lee T K. A line feature based SLAM with low grade range sensors using geometric constraints and active exploration for mobile robot[J]. Autonomous Robots, 2008,24(3):13 - 27.
  • 6Ila V, Porta J M, Cetto J A. Amortized constant time state estimation in pose SLAM and hierarchical SLAM using a mixed Kalman-information filter[J]. Robotics and Autonomous Systems, 2011,59(5) :310 - 318.
  • 7Delius M D, Burgard W. Maximum-likelihood sample- based maps for mobile robots [J]. Robotics and Autonomous Systems, 2010,58(2) : 133 - 139.
  • 8Foka A, Trahanias P. Real-time hierarchical POMDPs for autonomous robot navigation[J]. Robotics and Au- tonomous Systems, 2007,55(7) :561 - 571.
  • 9Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with rao-blackwellized particle filters [J]. IEEE Transactions on Robotics, 2007,23(1) :34 - 46.
  • 10Arnaud D, Nando D F, Neil G. Sequential Monte- Carlo methods in practice[M]. New York: Springe- Verlag, 2001.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部