摘要
研究了边值问题(Φp(u′))′(t)+q(t)f(t,u(t),u′(t))=0,0<t<1,u′(0)=sum αiu′(εi) from i=1 to n,u(1)=sum βiu(εi) from i=1 to n,在C1[0,1]上存在正解.方法是将边值问题转化为积分方程,通过建立算子,运用不动点定理.
Boundary value problems (Φp(u′))′(t)+q(t)f(t,u(t),u′(t))=0,0t1,u′(0)=sum αiu′(εi) from i=1 to n,u(1)=sum βiu(εi) from i=1 to n are discussed.The boundary value problem is transformed into integral equation,through the establishment of operator,and using the fixed point theorem.
出处
《河北北方学院学报(自然科学版)》
2011年第5期16-20,共5页
Journal of Hebei North University:Natural Science Edition