期刊文献+

广义Macaulay-Northcott模与包络

Generalized Macaulay-Northcott modules and envelopes
原文传递
导出
摘要 研究了广义Macaulay-Northcott模的包络性质。设M是右R-模,Ω是一个右R-模的类,E∈Ω,i:M→E是右R-模同态,证明了i:M→E是M的Ω-包络当且仅当[iS,≤]:[MS,≤]→[ES,≤]是[MS,≤]的[ΩS,≤]-包络,其中[MS,≤]是右R-模M上的广义Maucaulay-Northcott模;讨论了[MS,≤]的Galois群与M的Galois群之间的关系。 The envelope of generalized Macaulay-Norhtcott modules is discussed.Let M be a right R-module,Ω a class of right R-modules,E∈Ω and i:M→E a right R-homomorphism,it is shown that i:M→E is an Ω-envelope of M if and only if [iS,≤]:[MS,≤]→ [ES,≤] is an [ΩS,≤]-envelope of ,where is the generalized Maucaulay-Northcott module over the right R-module M.Also the relations between the Galois group of the module and the Galois group of the module M are described.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第4期57-63,67,共8页 Journal of Shandong University(Natural Science)
基金 教育部高等学校博士学科点专项科研基金项目(20096203120001)
关键词 广义Macaulay-Northcott模 Ω-包络 GALOIS群 generalized Macaulay-Northcott modules Ω-envelope Galois group
  • 相关文献

参考文献3

二级参考文献37

  • 1薛卫民.环的拟对偶及其推广[J].福建师范大学学报(自然科学版),1993,9(2):9-12. 被引量:1
  • 2[1]Ahsan, J. & Enochs, E., Torsion free injective covem, Comm. Algebra, 12:9(1984), 1139-1146.
  • 3[2]Auslander, M. & Buchweitz, R., The homological theory of maximal Cohen-Macaulay approximations,Soc. Math. de France, Memoire 38(1989), 5-37.
  • 4[3]Enochs, E., Garcia Rozas, J. R. & Oyonarte, L., Covering morphisms, Comm. Algebra, 28:8(2000),3823-3835.
  • 5[4]Enochs, E. & Jenda, O., Resolutions by Gorenstein injective and projective modules and modules of finite injective dimension over Gorenstein rings, Comm. Algebra, 23:3(1995), 869-877.
  • 6[5]Enochs, E., Jenda, O. & Xu, J., Covers and envelopes over Gorenstein rings, Tsukuba Journal Math.,20(1996), 487-503.
  • 7[6]Enochs, E. & Xu, J., Gorenstein fiat covers of modules over Gorenstein rings, J. Algebra, 181(1996),288-313.
  • 8[7]Iwanaga, Y., On rings with finite self-injective dimension Ⅱ, Tsukuba J. Math., 4(1980), 107-113.
  • 9[8]Liu Zhongkui & Chen Hui, Quasi-duality for the rings of generalized power series, Comm. Algebra,28:3(2000), 1175-1188.
  • 10[9]Liu Zhongkui, Injectivity of modules of generalized inverse polynomials, Comm. Algebra, 29:2(2001),583-592.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部