期刊文献+

带Michaelis-Menten型产出项的肿瘤浸润模型

Analysis of a signal production term of the Michaelis-Menten type modeling cancer invasion
下载PDF
导出
摘要 考虑一个带Michaelis-Menten型信号产出项的趋化-趋触系统,该系统被用来刻画癌症浸润的过程.在初始数据是充分光滑的情况之下,证明该系统存在惟一且有界的整体光滑解.该模型由3个反应-扩散-偏微分方程组成,描述了肿瘤细胞、基质降解酶、细胞外基质的变化.首先,对该模型用偏微分方程原理来加以分析研究,利用压缩不动点定理证明了系统局部解的存在性和惟一性,然后在初始数据充分光滑的前提下,证明该系统存在惟一且有界的整体光滑解. A chemotaxis-haptotaxis model with a signal production term of the Michaelis-Menten type was contained.This system can be used to describe the process of caner invasion.The model consists of a 3×3reaction-diffusion-taxis partial differential equations describing interactions between cancer cells,matrix degrading enzymes,and the host tissue,and it includes two bounded nonlinear density-dependent chemotactic and haptotactic sensitivity functions.The model is analyzed by the theory of partial differential equations.The local existence and uniqueness of solutions is first proved by the fixed point theorem.Then,Under the assumption that the initial data is sufficiently smooth.This system admits a unique global smooth solution that is uniformly bounded.
作者 史秋月
出处 《纺织高校基础科学学报》 CAS 2011年第3期358-363,共6页 Basic Sciences Journal of Textile Universities
关键词 趋化 趋触性 扩散方程 整体解存在性 有界性 chemotaxis haptotaxis globalexistence boundedness
  • 相关文献

参考文献9

  • 1CHAPLAIN M A J, LOLAS G. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity [ J ]. Net Hetero Med,2006 ( 1 ) :399-439.
  • 2MYERSCOUGH M R, MAINI P K, PAINTER K J. Pattern formationin a generaliged chemotatic model [ J ]. Bull Math Biol, 1998,60 : 1-60.
  • 3TAO Y, WANG M. Global solution for achemotactic-haptotactic model of cancer invasion [ J ]. Nonlinearity, 2008,21 : 2 221- 2 238.
  • 4TAO Y. Global existence of classical solutionsto a combined chemotaxis-haptotaxis model with logistic source[ J ]. J Math Anal Appl, 2009,354: 60-69.
  • 5LADYZENSKAJA 0 A, SOLONNIKOV V A, URAL'CEVA N N. Linear and quasi-linear equations of parabolic type [ M ]. Rhode Island : Amer Math Soc, 1968:23.
  • 6HORSTMANN D, WINKLER M. Boundedness vs. blow-up in a chemotaxis system[ J]. J Differential Equations ,2005,215:52- 107.
  • 7HENRY D. Geometric theorey of semilinear parabolic equations [ M ]//Lecture Notes in Mathematics (840). Berlin: Springer, 1981.
  • 8ALIKAKOS N D. ff bounds of solutions ofreaction-diffusion equations [ J]. Comm Partial Differential Equations, 1979 (4) : 827 -868.
  • 9TAO Y. Boundedness in a chemotaxis model with oxygen consumption by bacteria [ J ]. J Math Anal Appl, 2011, doi: 10. 1016/j.jmaa,2011 (2) :41.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部