期刊文献+

一种改进的粒子群算法 被引量:4

An improved particle swarm optimization algorithm
下载PDF
导出
摘要 为克服粒子群算法易于陷入局部极值的缺点,通过引入聚群效应和扰动,设计了一种新的粒子群算法.通过对常用测试函数的数值试验,说明了新算法不仅能有效地进行全局搜索,而且具有更好的收敛精度. To overcome the particle swarm optimization algorithm to the local optima,an improved new algorithm is proposed by introducing the swarm behavior and disturbances.To show the optimization performances of the new algorithm,several benchmark functions are tested.The experimental results show that the new algorithm not only effectively solves the premature convergence problem,but also significantly speeds up the convergence.
出处 《纺织高校基础科学学报》 CAS 2011年第3期428-431,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60671063 10902062)
关键词 聚群 粒子群算法 扰动 惯性权重 swarm behavior particle swarm optimization algorithm disturbances inertia weight
  • 相关文献

参考文献4

二级参考文献19

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报(自然科学版),2006,31(3):93-96. 被引量:15
  • 4段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 5戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 6李晓磊 钱积新.人工鱼群算法:自下而上的寻优模式[A]..过程系统工程年会论文集[C].,2001.76~82.
  • 7Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conferece on Neural Networks.USA:IEEE Press, 1995,4:1942-1948.
  • 8Eberhart R C,Kermedy J.A new optimizer using particle swarm theroy[C]//Proc of the 6th international Symposium on MicroMachine and Hunan Science, Nagoya, Japan, 1995 : 39-43.
  • 9Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence,Anchorage,Alaska, 1998:69-73.
  • 10Lei Kai-you,Wang Fang,Qiu Yu-hui,et al.An adaptive inertia weight strategy for particle swarm optimizer[C]//The 3rd Intl Conf on Mechat Ronics and Information Technology,Chongqing,China, 2005.

共引文献960

同被引文献40

  • 1胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 2延丽平,曾建潮.具有自适应随机惯性权重的PSO算法[J].计算机工程与设计,2006,27(24):4677-4679. 被引量:13
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transaction on System Man Cybernetic, 1979, SMC-9 : 62-6 6.
  • 5WONG A K C,SAHOO P K. A gray-level threshold selection method based on maximum entropy principle[J]. IEEE Trans, 1989, SMC-19 (4):866-871.
  • 6CHANDA B, MAJUMDER D D. A note on the use of gray-level co-occurrence matrix in threshold selection[J]. Signal Processing, 1988,15 (2): 149-167.
  • 7SHI J, MALIK J. Normalized cuts and image segmentation[J]. Proc IEEE CS Conf Computer Vision and Pattern Rec- ognition, 1997 (4): 731-737.
  • 8SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelli- gence, 2000,22 (8) : 888-905.
  • 9KENNEDY J, EBERHART R. Particle swarm optimization[C]. Processings of IEEE International Conference on Neu- ral Networks. Piscataway: IEEE Service Center, 1995 : 1 942-1 948.
  • 10KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceeding of IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center, 1995 : 1 942-1 948.

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部